Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Vaccin Immunother ; 18(1): 1-9, 2022 12 31.
Article in English | MEDLINE | ID: mdl-34473607

ABSTRACT

To control seasonal influenza epidemics in elders, a quadrivalent, inactivated, split-virion influenza vaccine (IIV4) comprising A and B lineages is produced for young individuals and adults aged ≥60 years. In this phase III, randomized, double-blind, active-controlled trial, we compared safety and immunogenicity of IIV4 with a licensed quadrivalent inactivated vaccine (IIV4-HL) produced by Hualan Biological Engineering during the 2019 influenza season. Participants were randomly assigned to receive IIV4 (n = 959) or IIV4-HL (n = 959). Compared to IIV4-HL, geometric mean titers (GMT) of hemagglutination inhibition (HAI) titers and seroconversion rate (SCR) of IIV4 demonstrated better antibody responses in A lineages (H1N1 and H3N2) (P < .01) and equivalent antibody responses in B lineages (B/Yamagata and B/Victoria) (P > .01) in both age groups. After immunization, IIV4 provided a satisfactory SCR and seroprotection rate (SPR) in elders. No discernible variation in immunogenicity was observed between the two age cohorts. In both age groups, IIV4 and IIV4-HL recipients experienced similar levels of solicited and unsolicited adverse events (AEs), and the incidence of AEs was low in both vaccine groups. Most AEs were of mild-to-moderate severity and no grade 3 AEs in IIV4 group, but AEs in adults aged 60-65 were little higher than in adults over 65 years in IIV4 and IIV4-HL groups (IIV4: 14.66% vs. 10.36%; IIV4-HL:14.67% vs. 11.43%). Totally, IIV4 was generally well tolerated and induced high antibody titers against all four influenza strains in elderly, making it a compelling alternative for the elderly aged ≥60 years.Trial registration: Clinical Trials.gov: 2015L00649-2.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Aged , Antibodies, Viral , Hemagglutination Inhibition Tests , Humans , Immunogenicity, Vaccine , Influenza A Virus, H3N2 Subtype , Influenza, Human/prevention & control , Vaccines, Combined , Vaccines, Inactivated
2.
Emerg Microbes Infect ; 10(1): 1589-1597, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34197281

ABSTRACT

Safe and effective vaccines are still urgently needed to cope with the ongoing COVID-19 pandemic. Recently, we developed a recombinant COVID-19 vaccine (V-01) containing fusion protein (IFN-PADRE-RBD-Fc dimer) as antigen verified to induce protective immunity against SARS-CoV-2 challenge in pre-clinical study, which supported progression to Phase I clinical trials in humans. A Randomized, double-blind, placebo-controlled Phase I clinical trial was initiated at the Guangdong Provincial Center for Disease Control and Prevention (Gaozhou, China) in February 2021. Healthy adults aged between 18 and 59 years and over 60 years were sequentially enrolled and randomly allocated into three subgroups (1:1:1) either to receive the vaccine (10, 25, and 50 µg) or placebo (V-01: Placebo = 4:1) intramuscularly with a 21-day interval by a sentinel and dose escalation design. The data showed a promising safety profile with approximately 25% vaccine-related overall adverse events (AEs) within 30 days and no grade 3 or worse AEs. Besides, V-01 provoked rapid and strong immune responses, elicited substantially high-titre neutralizing antibodies and anti-RBD IgG peaked at day 35 or 49 after first dose, presented with encouraging immunogenicity at low dose (10 µg) subgroup and elderly participants, which showed great promise to be used as all-aged (18 and above) vaccine against COVID-19. Taken together, our preliminary findings indicate that V-01 is safe and well tolerated, capable of inducing rapid and strong immune responses, and warrants further testing in Phase II/III clinical trials.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Interferons/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , China , Double-Blind Method , Female , Humans , Immunoglobulin G/blood , Interferons/administration & dosage , Interferons/genetics , Male , Middle Aged , Placebos , Vaccination/adverse effects , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult
3.
Aging (Albany NY) ; 13(7): 9801-9819, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33744852

ABSTRACT

Clinical data showed sex variability in the immune response to influenza vaccination, this study aimed to investigate differentially expressed genes (DEGs) that contribute to sex-bias immunity to quadrivalent inactivated influenza vaccines (QIVs) in the elderly. 60 healthy adults aged 60-80 yrs were vaccinated with QIVs, and gene expression was analyzed before and after vaccination. The humoral immunity was analyzed by HAI assay, and the correlation of gene expression patterns of two sex groups with humoral immunity was analyzed. The DEGs involved in type I interferon signaling pathway and complement activation of classical pathway were upregulated within 3 days in females. At Day 28, the immune response showed a male-bias pattern associated with the regulation of protein processing and complement activation of classical pathway. A list of DEGs associated with variant responses to influenza vaccination between females and males were identified by biology-driven clustering. Old females have a greater immune response to QIVs but a rapid antibody decline, while old males have the advantages to sustain a durable response. In addition, we identified genes that may contribute to the sex variations toward influenza vaccination in the aged. Our findings highlight the importance of developing personalized seasonal influenza vaccines.


Subject(s)
Immunity, Humoral , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Transcriptome , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Sex Factors , Vaccination
4.
Front Immunol ; 11: 603337, 2020.
Article in English | MEDLINE | ID: mdl-33343577

ABSTRACT

Insights into the potential candidate hub genes may facilitate the generation of safe and effective immunity against seasonal influenza as well as the development of personalized influenza vaccines for the elderly at high risk of influenza virus infection. This study aimed to identify the potential hub genes related to the immune induction process of the 2018/19 seasonal quadrivalent inactivated influenza vaccines (QIVs) in the elderly ≥60 years by using weighted gene co-expression network analysis (WGCNA). From 63 whole blood samples from16 elderly individuals, a total of 13,345 genes were obtained and divided into eight co-expression modules, with two modules being significantly correlated with vaccine-induced immune responses. After functional enrichment analysis, genes under GO terms of vaccine-associated immunity were used to construct the sub-network for identification and functional validation of hub genes. MCEMP1 and SPARC were confirmed as the hub genes with an obvious effect on QIVs-induced immunity. The MCEMP1 expression was shown to be negatively correlated with the QIVs-associated reactogenicity within 7 days after vaccination, which could be suppressed by the CXCL 8/IL-8 and exacerbated by the Granzyme-B cytotoxic mediator. Meanwhile, the SPARC expression was found to increase the immune responses to the QIVs and contribute to the persistence of protective humoral antibody titers. These two genes can be used to predict QIVs-induced adverse reaction, the intensity of immune responses, and the persistence of humoral antibody against influenza. This work has shed light on further research on the development of personalized QIVs with appropriate immune responses and long-lasting immunity against the forthcoming seasonal influenza.


Subject(s)
Gene Regulatory Networks , Immunity, Humoral/genetics , Immunogenicity, Vaccine/genetics , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Transcriptome , Age Factors , Aged , Aged, 80 and over , Antibodies, Viral/blood , Biomarkers/blood , China , Cytokines/blood , Double-Blind Method , Female , Gene Expression Regulation , Humans , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Influenza, Human/genetics , Influenza, Human/immunology , Influenza, Human/virology , Male , Membrane Proteins/genetics , Middle Aged , Osteonectin/genetics , Time Factors , Vaccination
5.
J Infect Dis ; 220(3): 392-399, 2019 07 02.
Article in English | MEDLINE | ID: mdl-30891604

ABSTRACT

BACKGROUND: This study tested the hypothesis that the immunogenicity and safety of the simultaneous administration of enterovirus 71 (EV71) vaccine (dose 1) with recombinant hepatitis B vaccine (HepB) on day 1 and EV71 vaccine (dose 2) with group A meningococcal polysaccharide vaccine (MenA) on day 30 is not inferior to separate administration of each vaccine. METHODS: The study was designed as a randomized, open-label, noninferiority trial. A total of 775 healthy infants aged 6 months were randomly assigned in a ratio of 1:1:1 to receive simultaneous administration of EV71 vaccine (dose 1) and HepB on day 1 and EV71 vaccine (dose 2) and MenA on day 30 (the SI group); administration of doses 1 and 2 of EV71 vaccine on days 1 and 30, respectively (the SE1 group); or administration of HepB and MenA on days 1 and 30, respectively (the SE2 group). RESULTS: According to the per protocol set, antibody responses against EV71, hepatitis B virus (HBV), and group A meningococcal polysaccharide were similar regardless of administration schedule. With the non-inferiority margin setting at 10%, the seroconversion rates of the three pathogens in the SI group (100% [98.25, 100], 44.84% [38.20, 51.63] and 27.83% [21.91, 34.38]) were not inferior to those in SE1 or SE2 group (100% [98.31, 100], 44.35% [37.82, 51.02] and 29.17% [23.20, 35.72], respectively). Frequencies of adverse reactions to each vaccination regimen were comparable (60.62% in the SI group vs 52.33% in the SE1 group and 56.98% in the SE2 group; P = .16). CONCLUSIONS: Simultaneous administration of combined EV71 vaccine with HepB and MenA has noninferior immunogenicity and safety, compared with separate administration of these vaccines. CLINICAL TRIALS REGISTRATION: NCT03274102.


Subject(s)
Antibody Formation/immunology , Hepatitis B Vaccines/immunology , Meningococcal Vaccines/immunology , Polysaccharides, Bacterial/immunology , Vaccines, Combined/immunology , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Antibodies, Viral/immunology , Enterovirus/immunology , Enterovirus Infections/immunology , Female , Hepatitis B/immunology , Hepatitis B virus/immunology , Humans , Infant , Male , Meningococcal Infections/immunology , Neisseria meningitidis/immunology , Vaccination/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...