Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Theor Biol ; 572: 111575, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37423484

ABSTRACT

Cross-immunity, as an evolutionary driver, can contribute to pathogen evolution, particularly pathogen diversity. Healthcare interventions aimed at reducing disease severity or transmission are commonly used to control diseases and can also induce pathogen evolution. Understanding pathogen evolution in the context of cross-immunity and healthcare interventions is crucial for infection control. This study starts by modelling cross-immunity, the extent of which is determined by strain traits and host characteristics. Given that all hosts have the same characteristics, full cross-immunity between residents and mutants occurs when mutation step sizes are small enough. Cross-immunity can be partial when the step size is large. The presence of partial cross-immunity reduces pathogen load and shortens the infectious period inside hosts, reducing transmission between hosts and improving host population survival and recovery. This study focuses on how pathogens evolve through small and large mutational steps and how healthcare interventions affect pathogen evolution. Using the theory of adaptive dynamics, we found that when mutational steps are small (only full cross-immunity is present), pathogen diversity cannot occur because it maximises the basic reproduction number. This results in intermediate values for both pathogen growth and clearance rates. However, when large mutational steps are allowed (with full and partial cross-immunity present), pathogens can evolve into multiple strains and induce pathogen diversity. The study also shows that different healthcare interventions can have varying effects on pathogen evolution. Generally, low levels of intervention are more likely to induce strain diversity, while high levels are more likely to result in strain reduction.


Subject(s)
Communicable Diseases , Humans , Communicable Diseases/genetics , Basic Reproduction Number , Host-Pathogen Interactions , Biological Evolution
2.
J Theor Biol ; 554: 111276, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36126777

ABSTRACT

Given an endemic infectious disease and a budget, how do we optimally allocate interventions to control the disease? This paper shows that the optimal strategy varies depending on the budget, the type of intervention, the trajectory of pathogen load, and the objective. Using a model with explicit within- and between-host dynamics, we model isolation, supportive treatment, and specific treatment. Isolation and supportive treatment affect the transmission coefficient and the disease-induced mortality rate, respectively, in the between-host dynamics. Specific treatment affects the clearance rate of pathogens in the within-host dynamics. We study the optimisation of the three interventions for various budget levels via evaluating isolation and supportive treatment at the population level and specific treatment at both the population and individual levels. At the population level, we consider the risk of transmission, the burden of illness, and the survival probability, and to that end, we choose the population-level infection rate, the population density of infected individuals, and the total disease-induced mortality rate as objective functions. At the individual level, we consider the length of infection and the pathogen load, and to that end, we choose the maximum infection-age and the maximum pathogen load as objective functions. The objective is to minimise these functions through varying two variables that refer to when the intervention starts and when it stops for an infected individual and also indicate what kind of individuals can get the intervention from the population perspective. We find that the optimal strategy of isolation is to isolate individuals with a higher pathogen load, given a lower budget. The optimal strategy of supportive treatment can be the same as isolation or simply no treatment. The optimal strategy of specific treatment is complicated, and it can be to treat individuals with pathogen loads above a particular level until they recover or until the pathogens can decrease when treatment stops, or it can be another scenario.


Subject(s)
Delivery of Health Care , Humans , Probability
3.
J Theor Biol ; 531: 110900, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34530031

ABSTRACT

We study the evolution of virulence of an endemic pathogen in response to healthcare interventions which affect host recovery and pathogen transmission. By anticipating the evolutionary response of the pathogen we may develop effective long-term management strategies for controlling the impact of the endemic on the society. To that end, we use standard Adaptive Dynamics techniques in an SIS model. The recovery rate and the transmission rate, both of which can be affected by healthcare interventions, are used as evolutionary control variables. The effect of interventions may be density-independent (self-help based on healthcare instructions) or density-dependent (when assistance of a healthcare worker is required). We consider the evolutionary response of the pathogen both to abrupt changes and to gradual changes in the level of healthcare intervention. Healthcare intervention is optimised for three alternative objectives: minimisation of virulence, minimisation of the probability that an infected individual dies of the disease, and total eradication of the endemic. We find that the optimal strategy may depend on the objective. High levels of healthcare intervention may eradicate the pathogen, but this option may not be available for budgetary reasons or otherwise. Counterintuitively, to minimise virulence, one should keep healthcare interventions at a minimum, while to minimise the probability for an infected individual to die of the disease, both low and high levels of healthcare intervention suffice. Changes in the level of healthcare intervention should be implemented fast (not gradually) in order to avoid sudden changes in pathogen evolution and the possible emergence of multiple simultaneously coexisting pathogen strains.


Subject(s)
Biological Evolution , Models, Biological , Delivery of Health Care , Feedback , Host-Pathogen Interactions , Virulence
4.
J Biol Dyn ; 8: 20-41, 2014.
Article in English | MEDLINE | ID: mdl-24963975

ABSTRACT

In this paper, on the basis of the simplified two-dimensional virus infection dynamics model, we propose two extended models that aim at incorporating the influence of activation-induced apoptosis which directly affects the population of uninfected cells. The theoretical analysis shows that increasing apoptosis plays a positive role in control of virus infection. However, after being included the third population of cytotoxic T lymphocytes immune response in HIV-infected patients, it shows that depending on intensity of the apoptosis of healthy cells, the apoptosis can either promote or comfort the long-term evolution of HIV infection. Further, the discrete-time delay of apoptosis is incorporated into the pervious model. Stability switching occurs as the time delay in apoptosis increases. Numerical simulations are performed to illustrate the theoretical results and display the different impacts of a delay in apoptosis.


Subject(s)
Apoptosis , HIV Infections/epidemiology , HIV Infections/pathology , Models, Biological , Computer Simulation , HIV Infections/immunology , HIV Infections/virology , Humans , Numerical Analysis, Computer-Assisted , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...