Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
Front Cell Infect Microbiol ; 14: 1322113, 2024.
Article in English | MEDLINE | ID: mdl-38585654

ABSTRACT

Background: Dopamine, a frequently used therapeutic agent for critically ill patients, has been shown to be implicated in clinical infections recently, however, the precise mechanisms underlying this association remain elusive. Klebsiella quasivariicola, a novel strain belonging to the Klebsiella species, exhibits potential pathogenic attributes. The impact of dopamine on K. quasivariicola infection has aroused our interest. Objective: Considering the contribution of host immune factors during infection, this study aimed to investigate the intricate interactions between K. quasivariicola, dopamine, and macrophages were explored. Methods: RAW264.7 cells and C57/BL6 mice were infected with K. quasivariicola, and the bacterial growth within macrophage, the production of inflammatory cytokines and the pathological changes in mice lungs were detected, in the absence or presence of dopamine. Results: Dopamine inhibited the growth of K. quasivariicola in the medium, but promoted bacterial growth when co-cultured with macrophages. The expression of proinflammatory cytokines increased in RAW 264.7 cells infected with K. quasivariicola, and a significant rise was observed upon the addition of dopamine. The infection of K. quasivariicola in mice induced an inflammatory response and lung injury, which were exacerbated by the administration of dopamine. Conclusions: Our findings suggest that dopamine may be one of the potential risk factors associated with K. quasivariicola infection. This empirical insight provides solid references for clinical precision medicine. Furthermore, an in vitro model of microbes-drugs-host immune cells for inhibitor screening was proposed to more accurately replicate the complex in vivo environment. This fundamental work had contributed to the present understanding of the crosstalk between pathogen, dopamine and host immune cells.


Subject(s)
Klebsiella Infections , Lung , Humans , Mice , Animals , Lung/pathology , Dopamine , Klebsiella pneumoniae/metabolism , Macrophages/microbiology , Cytokines/metabolism , Klebsiella/metabolism , Cell Proliferation , Klebsiella Infections/microbiology , Mice, Inbred C57BL
4.
Opt Express ; 31(11): 18567-18575, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37381566

ABSTRACT

The realization of red-emitting InGaN quantum well (QW) is a hot issue in current nitride semiconductor research. It has been shown that using a low-Indium (In)-content pre-well layer is an effective method to improve the crystal quality of red QWs. On the other hand, keeping uniform composition distribution at higher In content in red QWs is an urgent problem to be solved. In this work, the optical properties of blue pre-QW and red QWs with different well width and growth conditions are investigated by photoluminescence (PL). The results prove that the higher-In-content blue pre-QW is beneficial to effectively relieve the residual stress. Meanwhile, higher growth temperature and growth rate can improve the uniformity of In content and the crystal quality of red QWs, enhancing the PL emission intensity. Possible physical process of stress evolution and the model of In fluctuation in the subsequent red QW are discussed. This study provides a useful reference for the development of InGaN-based red emission materials and devices.

6.
Ying Yong Sheng Tai Xue Bao ; 34(4): 928-936, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37078310

ABSTRACT

Soil aggregates are the main sites for the decomposition of soil organic matter and the formation of humus. The composition characteristics of aggregates with different particle sizes are one of the indicators for soil fertility. We explored the effects of management intensity (frequency of fertilization and reclamation) on soil aggregates in moso bamboo forests, including mid-intensity management (T1, fertilization and reclamation every 4 years), high-intensity management (T2, fertilization and reclamation every 2 years), and extensive management (CK). The water-stable soil aggregates (0-10, 10-20, and 20-30 cm layers) from moso bamboo forest were separated by a combination of dry and wet sieving method and the distribution of soil organic carbon (SOC), total nitrogen (TN) and available phosphorus (AP) across different soil layers were determined. The results showed that management intensities had significant effects on soil aggregate composition and stability, and SOC, TN, AP distribution of moso bamboo forests. Compared with CK, T1 and T2 decreased the proportion and stability of macroaggregates in 0-10 cm soil layer, but increased that in 20-30 cm soil layer, while reduced the content of organic carbon in macroaggregates, the contents of organic carbon, TN and AP in microaggregates. Such results indicated that the intensified management was not conducive to formation of macroaggregates in 0-10 cm soil layer and carbon sequestration in macroaggregates. It was beneficial to the accumulation of organic carbon in soil aggregates and nitrogen and phosphorus in microaggregates with lower human disturbance. Mass fraction of macroaggregates and organic carbon content of macroaggregates was significantly positively correlated with aggregate stability, which best explained the variations of aggregate stability. Therefore, macroaggregates and organic carbon content of macroaggregates were the most important factors affecting the formation and stability of aggregates. Appropriate reduction of disturbance was beneficial to the accumulation of macroaggregates in the topsoil, the sequestration of organic carbon by macro-aggregates, and the sequestration of TN and AP by microaggregates, and improving soil quality and sustainable management in moso bamboo forest from the point of view of soil aggregate stability.


Subject(s)
Carbon , Soil , Humans , Carbon/analysis , Nitrogen/analysis , Phosphorus , Forests , Poaceae , China
11.
Huan Jing Ke Xue ; 43(6): 2957-2965, 2022 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-35686765

ABSTRACT

Based on the tropical cyclone track data in the northwest Pacific Ocean from 2015 to 2020, meteorological observation data, and ozone concentration monitoring data in the Pearl River Delta (PRD), the impacts of four tropical cyclones, namely the westbound tropical cyclone (type A), East China Sea tropical cyclone (type B), offshore tropical cyclone (type C), and offshore tropical cyclone (type D), on ozone concentration in the PRD were analyzed. The results showed that:under the influence of the type A tropical cyclone, the risk of regional ozone concentration exceeding the standard exhibited little change. Under the influence of the type B tropical cyclone, the risk of ozone exceeding the standard in the PRD was obviously increased. Under the influence of the type C tropical cyclone, the risk of regional ozone exceeding the standard obviously increased, but the increase was weaker than that of the type B tropical cyclone. The type D tropical cyclone was far away from the Chinese mainland and had little influence on ozone concentration in the PRD. When the type A or type C tropical cyclones occurred, the average daily maximum 8-hour average ozone concentration (MDA8) in the PRD region increased by approximately 5 µg·m-3, and the ozone MDA8 in some cities may have decreased. When the type B tropical cyclone occurred, the regional ozone MDA8 increased by 19 µg·m-3 on average, and the ozone concentration in all cities increased significantly. Among them, the average increase in ozone MDA8 in Zhuhai and Jiangmen was relatively large, with an increase of greater than 20 µg·m-3. Generally speaking, the ozone concentration in cities in the western PRD was more affected by tropical cyclones. When the type B tropical cyclone occurred, solar radiation increased, sunshine duration lengthened, cloud cover decreased, air temperature rose, and relative humidity decreased in the PRD, all of which were beneficial to photochemical reactions. Meanwhile, downward flow increased in the boundary layer, and downward flow transported high-concentration ozone to the ground, which promoted the increase in ozone concentration on the ground. When type A or type C tropical cyclones occurred, the change in meteorological conditions was not entirely conducive to the increase in ozone concentration, and in some cases, even adverse meteorological conditions such as rainfall occurred, which led to the risk of regional ozone exceeding the standard being less than that of the type B tropical cyclone. Affected by tropical cyclones, sunshine hours and air temperature in western cities of the PRD increased more than those in eastern cities, which was more conducive to ozone generation.


Subject(s)
Air Pollutants , Cyclonic Storms , Ozone , Air Pollutants/analysis , Environmental Monitoring/methods , Ozone/analysis , Rivers
12.
Discov Oncol ; 13(1): 35, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35612641

ABSTRACT

Periplakin (PPL) is a main member in plakin family, which plays important role in cellular adhesion complexes supporting and cytoskeletal integrity supplying. PPL was reported to be a potential biomarker candidate for several types of cancers. However, the biological functions and underlying mechanisms of PPL in ovarian cancer (OV) remain unclear. In the present study, we used GEPIA 2, Human Protein Atlas, Oncomine, LinkedOmics, Kaplan-Meier Plotter, STRING, CytoHubba plug-in and TIMER to determine the associations among PPL expression, prognosis, and immune cell infiltration in OV. RT-qPCR and IHC analysis were conducted to validated the role of PPL in an independent OV cohort. Compared with the normal ovary tissues, the levels of PPL mRNA and protein expression were both obviously higher in OV tumors from multiple datasets (P < 0.05), and a poor survival was observed to be strongly correlated with high PPL expression (P < 0.05). Moreover, the results were further validated by RT-qPCR and IHC analysis in an independent OV cohort. A gene-clinical nomogram was constructed, including PPL mRNA expression and clinical factors in TCGA. Functional network analysis suggested that PPL participates in the important pathways like Wnt signaling pathway, MAPK signaling pathway. Ten hub genes (LAMC2, PXN, LAMA3, LAMB3, LAMA5, ITGA3, TLN1, ACTN4, ACTN1, and ITGB4) were identified to be positively associated with PPL. Furthermore, PPL expression was negatively correlated with infiltrating levels of CD4+ T cell, macrophages, neutrophils, and dendritic cells. In conclusion, PPL may be an unfavorable prognostic biomarker candidate in OV, which was also correlated with immune infiltrating and function in immunotherapy response.

14.
Medicine (Baltimore) ; 100(46): e27744, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34797300

ABSTRACT

BACKGROUND: Reported studies have shown that expression levels of microRNAs (miRNAs) are related to survival time of patients with heart failure (HF). A systematic review and meta-analysis were conducted to study circulating miRNAs expression and patient outcome. METHODS: Meta-analysis estimating expression levels of circulating miRNAs in HF patients from January 2010 until June 30, 2018, through conducting online searches in Pub Med, Cochrane Database of Systematic, EMBASE and Web of Science and reviewed by 2 independent researchers. Using pooled hazard ratio with a 95% confidence interval to assess the correlation between miRNAs expression levels and overall survival. RESULTS: Four relevant articles assessing 19 circulating miRNAs in 867 patients were included. In conclusion, the meta-analysis results suggest that HF patients with low expression of serum miR-1, miR-423-5p, miR-126, miR-21, miR-23, miR-30d, miR-18a-5p, miR-16-5p, miR-18b-5p, miR-27a-3p, miR-26b-5p, miR-30e-5p, miR-106a-5p, miR-233-3P, miR-301a-3p, miR-423-3P, and miR-128 have significantly worse overall survival (P  <  .05). Among them, miR-18a-5p, miR-18b-5p, miR-30d, miR-30e-5p, and miR-423-5p are strong biomarkers of prognosis in HF.


Subject(s)
Circulating MicroRNA/genetics , Heart Failure/genetics , MicroRNAs , Biomarkers/blood , Humans , MicroRNAs/genetics , Prognosis
15.
Biosci Rep ; 41(12)2021 12 22.
Article in English | MEDLINE | ID: mdl-34793589

ABSTRACT

Ovarian cancer (OV) is the most lethal gynecologic malignancy. One major reason of the high mortality of the disease is due to platinum-based chemotherapy resistance. Increasing evidence reveal the important biological functions and clinical significance of zinc finger proteins (ZNFs) in OV. In the present study, the relationship between the zinc finger protein 76 (ZNF76) and clinical outcome and platinum resistance in patients with OV was explored. We further analyzed ZNF76 expression via multiple gene expression databases and identified its functional networks using cBioPortal. RT-qPCR and IHC assay shown that the ZNF76 mRNA and protein expression were significantly lower in OV tumor than that in normal ovary tissues. A strong relationship between ZNF76 expression and platinum resistance was determined in patients with OV. The low expression of ZNF76 was associated with worse survival in OV. Multivariable analysis showed that the low expression of ZNF76 was an independent factor predicting poor outcome in OV. The prognosis value of ZNF76 in pan-cancer was validated from multiple cohorts using the PrognoScan database and GEPIA 2. A gene-clinical nomogram was constructed by multivariate cox regression analysis, combined with clinical characterization and ZNF76 expression in TCGA. Functional network analysis suggested that ZNF76 was involved in several biology progressions which associated with OV. Ten hub genes (CDC5L, DHX16, SNRPC, LSM2, CUL7, PFDN6, VARS, HSD17B8, PPIL1, and RGL2) were identified as positively associated with the expression of ZNF76 in OV. In conclusion, ZNF76 may serve as a promising prognostic-related biomarker and predict the response to platinum in OV patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Kruppel-Like Transcription Factors/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Platinum Compounds/therapeutic use , Biomarkers, Tumor/metabolism , Databases, Genetic , Decision Support Techniques , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Kruppel-Like Transcription Factors/metabolism , Middle Aged , Nomograms , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Progression-Free Survival , Protein Interaction Maps , Signal Transduction
16.
Huan Jing Ke Xue ; 42(1): 97-105, 2021 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-33372461

ABSTRACT

Based on the monitoring data of the Guangdong-Hong Kong-Macao Pearl River Delta Regional (PRD) Air Quality Monitoring Network from 2006 to 2019, the ozone trend in RRD was analyzed using the Mann-Kendall test method, Sen's slope method, and the Pettitt change point test. The results show that:① the average ozone concentration in the PRD has increased significantly from 2006 to 2019 (P<0.05), with an average growth rate of 0.80 µg·(m3·a)-1. After 2016, the rate of ozone increase has accelerated. ② The average annual ozone concentration in the central PRD increased significantly, while in the peripheral areas of the PRD, this is not obvious. Ozone increases significantly in summer but not in other seasons.③ From 2006 to 2019, the concentration of NO2 in the central PRD decreased remarkably, so the titration effect weakened and resulted in an increase in the ozone concentration. The concentration of NO2 in the marginal areas of the PRD has little change, so the ozone concentration in these areas has little change. ④ With the changes of VOCs and NO2 concentrations, the chemical sensitivity of O3 production in the PRD is changing. The VOC-limited regimes are continuously decreasing, and the mixed NOx-VOC-limited regimes and NOx-limited regimes are increasing. In order to deal with regional ozone pollution, the cooperative control of VOCs and NOx needs to strengthen.

17.
Mol Cell Endocrinol ; 518: 111005, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32877753

ABSTRACT

In addition to serving as an incretin-based treatment of type 2 diabetes mellitus (T2DM), glucagon-like peptide 1 (GLP-1) can also reverse cardiovascular diseases caused by vascular remodelling. However, a detailed mechanism underlying how GLP-1 reverses vascular remodelling remains unclear. Here, Spontaneous hypertension rats (SHR) were used as an in vivo model of vascular remodelling. Treatment with a GLP-1 receptor (GLP-1R) agonist Liraglutide or dipeptidyl peptidase 4 (DPP4) inhibitor Alogliptin decreased systolic blood pressure (SBP), diastolic blood pressure (DBP), thickness of vascular wall, and overall collagen levels in SHR. In vitro vascular remodelling can be induced by exposing rat aortic smooth muscle cells (RASMC) to angiotensin II (Ang II); GLP-1 treatment attenuated AngII induction of RASMC proliferation, migration, and excessive extracellular matrix (ECM) degradation. Downregulation of matrix metalloproteinase 1 (MMP1) enhanced the inhibitory effects of GLP-1, and extracellular regulated protein kinase 1/2 (ERK1/2) and nuclear factor kappa-B (NF-κB) signalling participated in these processes. These results provide a new mechanistic understanding of key therapeutic strategies for the treatment of vascular remodelling-related diseases.


Subject(s)
Glucagon-Like Peptide 1/pharmacology , Matrix Metalloproteinase 1/genetics , Vascular Remodeling/drug effects , Animals , Blood Pressure/drug effects , Cells, Cultured , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Down-Regulation/drug effects , Down-Regulation/genetics , Gene Expression Regulation, Enzymologic/drug effects , Glucagon-Like Peptide 1/therapeutic use , Hypertension/drug therapy , Hypertension/genetics , Hypertension/metabolism , Hypertension/physiopathology , Liraglutide/pharmacology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Male , Matrix Metalloproteinase 1/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , NF-kappa B/metabolism , Piperidines/pharmacology , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Uracil/analogs & derivatives , Uracil/pharmacology , Vascular Remodeling/genetics
18.
Aging (Albany NY) ; 12(11): 10633-10641, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32482913

ABSTRACT

The study evaluates the serum levels of Trimethylamine N-Oxide (TMAO), a gut microbial metabolite, in 286 postmenopausal women with hip fracture. From January 1, 2018 to December 31, 2018, eligible patients were included. Same women without fracture mated age were enrolled. TMAO serum levels were tested by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The serum levels of TMAO were significantly higher in patients with hip fracture than in those controls (P<0.001). The serum levels of TMAO were also higher in patients with hip fracture only than in those who also had upper limb fracture (P=0.001). High level of TMAO was proved a predictor of both hip fracture and had upper limb fracture combined hip fracture, after the adjustment of other existing risk factors [e.g., for each 1 uM increase of TMAO, odd ratio 1.16 (95% CI, 1.07-1.25), P < 0.001; and 1.12 (95% CI, 1.03-1.26), P=0.008, respectively]. In summary, increased TMAO serum levels associated with high risk of hip fracture, suggesting that increase TMAO may contribute to osteoporosis and fracture in postmenopausal women.


Subject(s)
Gastrointestinal Microbiome/physiology , Hip Fractures/epidemiology , Methylamines/blood , Osteoporotic Fractures/epidemiology , Postmenopause/blood , Aged , Case-Control Studies , Female , Hip Fractures/blood , Humans , Methylamines/metabolism , Middle Aged , Osteoporotic Fractures/blood , Risk Factors , Tandem Mass Spectrometry
19.
Sci Rep ; 10(1): 6522, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32300174

ABSTRACT

Moso bamboo (Phyllostachysheterocycla (Carr.) Mitford cv. Pubescens) is an economically valuable plant in bamboo production areas of southern China, for which the management mode is crucial for improving the comprehensive benefits of bamboo forest stands. In this respect, mixed forested areas of bamboo and broad-leaved tree species can provide sound ecological management of bamboo in forestry operations. To further this goal, an outstanding question is to better understand the spatial distribution of soil bacterial communities in relation to the proportion of mixed in bamboo and broad-leaved forest. We analyzed soil bacterial community diversity and composition along a proportional gradient of 0-40% mixed-ratio (as represented by the width and size of the broad-leaved tree crown over the plot area) of bamboo and broad-leaved forest in Tianbao Yan Nature Reserve using the highthroughputsequencing of the 16S rRNA gene.Specifically, the sampling plots for the mixed proportions were divided according to the percentage of summed projected area of live broadleaf tree crowns. The main broad-leaved species in the five mixed ratio plots are the same. Each plot was 20 m × 20 m in size, and a total of 15 plots were established, three per forest ratio class. From each plot, soil samples were taken at the surface (0-10 cm depth) in December 2017. Our analysis revealed that soil bacterial diversity community structure and dominant flora changed under different mixing ratios of bamboo and broad-leaved trees. In the stand with a mixed ratio of 10-20%, the bacterial diversity index is higher; however, the diversity was lowest in the 20-30% stands. Among the 20-30% forest soil, Acidobacteria (Solibacteria, Solibacteriales, Acidobacteriales) was more abundant than in soils from other mixed-ratio stands.Redundancy analysis showed that mixed forest stand structure, soil pH, organic carbon, total nitrogen, and soil moisture all contributed to shaping the bacterial community structure. Changes in microbial communities were associated with species diversity in tree layers, availability of soil nutrients (SOC and TN), and changes in soil physical properties (MS, pH). Together, these empirical results suggest that different mixing ratios in the bamboo-broad-leaved mixed forest could influence the soil bacterial community structure indirectly, specifically by affecting the soil physical and chemical properties of the forest.


Subject(s)
Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Sasa/microbiology , Soil Microbiology , Bacteria/genetics , Bacteria/metabolism , Carbon/metabolism , China/epidemiology , Forests , Humans , Nitrogen/metabolism , Pinus/genetics , Pinus/microbiology , Sasa/genetics , Sasa/growth & development
20.
ACS Appl Mater Interfaces ; 12(8): 9000-9007, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32013385

ABSTRACT

A novel hybrid drug nanocarrier is developed with CuCo2S4 nanoparticles as the core to be encapsulated by poly(ionic liquid) (PIL), that is, poly(tetrabutylphosphonium styrenesulfonate) (P[P4,4,4,4][SS]), as the shell. Doxorubicin (DOX) is loaded onto the PIL shell via electrostatic attraction involving amine in DOX and styrenesulfonate in PIL. pH- and thermal-responsive characteristics of P[P4,4,4,4][SS] endow the multifunctional hybrid nanocarrier system DOX-CuCo2S4@PIL with sensitive dual-stimuli-triggered drug release behaviors. The CuCo2S4 core converts near-infrared (NIR) irradiation into thermal energy to trigger the shrinkage of the PIL shell, which subsequently promotes drug release, and the pH-responsive release of DOX involves pH-sensitive electrostatic interaction of the PIL shell with DOX. A favorable controlled release of 90.5% is achieved under pH/thermo dual stimuli. In vitro experiments with MCF-7 cells well demonstrated that the drug release is controlled by the acidic intracellular environment with NIR irradiation. The CuCo2S4 core also serves as a photoacoustic (PA) imaging contrast agent, as demonstrated by in vivo treatment of the MCF-7-carrying mice.


Subject(s)
Doxorubicin , Drug Carriers , Nanoparticles , Neoplasms, Experimental , Photoacoustic Techniques , Animals , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacology , Humans , MCF-7 Cells , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...