Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 634: 922-933, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29660886

ABSTRACT

Acetaminophen and sulfonamides are emerging contaminants. Conventional wastewater treatment systems fail to degrade these compounds properly. Mycoremediation, is a form of novel bioremediation that uses extracellular enzymes of white-rot fungi to degrade pollutants in the environment. In this study, spent mushroom compost (SMC), which contains fungal extracellular enzymes, was tested for acetaminophen and sulfonamides removal. Among the SMCs of nine mushrooms tested in batch experiments, the SMC of Pleurotus eryngii exhibited the highest removal rate for acetaminophen and sulfonamides. Several fungal extracellular enzymes that might be involved in removal of acetaminophen and sulfonamides were identified by metaproteomic analysis. The bacterial classes, Betaproteobacteria and Alphaproteobacteria, were revealed by metagenomic analysis and may be assisting with acetaminophen and sulfonamide removal, respectively, in the SMC of Pleurotus eryngii. Bioreactor experiments were used to simulate the capability of Pleurotus eryngii SMC for the removal of acetaminophen and sulfonamides from wastewater. The results of this study provide a feasible solution for acetaminophen and sulfonamide removal from wastewater using the SMC of Pleurotus eryngii.


Subject(s)
Agaricales , Biodegradation, Environmental , Composting/methods , Bacteria , Bioreactors , Pleurotus , Refuse Disposal/methods
2.
J Hazard Mater ; 277: 159-68, 2014 Jul 30.
Article in English | MEDLINE | ID: mdl-24411460

ABSTRACT

The intensive use of antibiotics may accelerate the development of antibiotic-resistant bacteria (ARB). The global geographical distribution of environmental ARB has been indicated by many studies. However, the ARB in the water environments of Taiwan has not been extensively investigated. The objective of this study was to investigate the communities of ARB in Huanghsi Stream, which presents a natural acidic (pH 4) water environment. Waishuanghsi Stream provides a neutral (pH 7) water environment and was thus also monitored to allow comparison. The plate counts of culturable bacteria in eight antibiotics indicate that the numbers of culturable carbenicillin- and vancomycin-resistant bacteria in both Huanghsi and Waishuanghsi Streams are greater than the numbers of culturable bacteria resistant to the other antibiotics tested. Using a 16S rDNA sequencing approach, both the antibiotic-resistant bacterial communities (culture-based) and the total bacterial communities (metagenome-based) in Waishuanghsi Stream exhibit a higher diversity than those in Huanghsi Stream were observed. Of the three classes of integron, only class I integrons were identified in Waishuanghsi Stream. Our results suggest that an acidic (pH 4) water environment may not only affect the community composition of antibiotic-resistant bacteria but also the horizontal gene transfer mediated by integrons.


Subject(s)
Anti-Bacterial Agents/toxicity , Bacteria/drug effects , Drug Resistance, Bacterial , Rivers , Water Microbiology , Water Pollutants, Chemical/toxicity , Bacteria/genetics , Cities , Drug Resistance, Bacterial/genetics , Gene Transfer, Horizontal/drug effects , Genes, Bacterial/drug effects , Integrons/drug effects , Integrons/genetics , RNA, Ribosomal, 16S , Rivers/chemistry , Rivers/microbiology , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...