Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37375273

ABSTRACT

Mulberry leaves are a well-known traditional Chinese medicine herb, and it has been observed since ancient times that leaves collected after frost have superior medicinal properties. Therefore, understanding the changes in critical metabolic components of mulberry leaves, specifically Morus nigra L., is essential. In this study, we conducted widely targeted metabolic profiling analyses on two types of mulberry leaves, including Morus nigra L. and Morus alba L., harvested at different times. In total, we detected over 100 compounds. After frost, 51 and 58 significantly different metabolites were identified in the leaves of Morus nigra L. and Morus alba L., respectively. Further analysis revealed a significant difference in the effect of defrosting on the accumulation of metabolites in the two mulberries. Specifically, in Morus nigra L., the content of 1-deoxynojirimycin (1-DNJ) in leaves decreased after frost, while flavonoids peaked after the second frost. In Morus alba L., the content of DNJ increased after frost, reaching its peak one day after the second frost, whereas flavonoids primarily peaked one week before frost. In addition, an analysis of the influence of picking time on metabolite accumulation in two types of mulberry leaves demonstrated that leaves collected in the morning contained higher levels of DNJ alkaloids and flavonoids. These findings provide scientific guidance for determining the optimal harvesting time for mulberry leaves.


Subject(s)
Alkaloids , Morus , Morus/metabolism , Flavonoids/analysis , 1-Deoxynojirimycin/metabolism , Alkaloids/metabolism , Plant Leaves/chemistry , Plant Extracts/metabolism
2.
Article in English | MEDLINE | ID: mdl-27928516

ABSTRACT

The aim of this study was to evaluate the antioxidant and antiproliferative activities of PSO in vitro and its application in horse oil storage. We determined the reducing power of PSO and its scavenging effects on hydroxyl (•OH) and 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH•) and tested its stabilizing effects on horse oil storage. The results showed that PSO had remarkable, dose-dependent antioxidant activities, and it effectively prevented horse oil lipid oxidation. We treated cervical cancer HeLa cells, esophageal cancer Eca-109 cells and breast cancer MCF-7 cells with PSO using non-neoplastic monkey kidney Vero cells as controls. The results indicate that PSO significantly inhibited tumor cell growth in a time- and dose-dependent fashion. Our studies suggest that PSO may be used as a substitute for synthetic antioxidants in food preservation and may be potentially useful as a food and cosmetic ingredient. Meanwhile, the oxidative stress can cause hypertension, so PSO is expected to develop a health care products for the prevention and mitigation hypertensive symptoms.

3.
Food Chem ; 192: 319-27, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26304354

ABSTRACT

The aim of this work was to study the effect of dynamic high pressure microfluidization (DHPM) on extracting total flavonoids from Cyperus esculentus L. (C. esculentus L.) leaves and to evaluate the antioxidant activity and antibacterial property of these flavonoids. In all the assays, pretreatment with DHPM was found to not only efficiently improve the yield of total flavonoids but also strengthen the antioxidant activity of the total flavonoids. C. esculentus L. leaves flavonoids had pronounced antioxidant activity in vivo that could significantly elevate the content of superoxide dismutase (SOD) without increasing the malondialdehyde (MDA) levels, and could also improve total antioxidant capacity in mice with a dose-dependent fashion. C. esculentus L. leaves flavonoids inhibited the growth of both Gram positive and Gram negative bacteria while no obvious inhibitory effect on Penicillium and Aspergillus could be observed. Our studies indicate that flavonoids from C. esculentus L. leaves can be taken as a natural antioxidant and bacteriostatic substance in food and pharmaceutical industry.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Antioxidants/isolation & purification , Chemical Fractionation/methods , Cyperus/chemistry , Flavonoids/isolation & purification , Lab-On-A-Chip Devices , Animals , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Biphenyl Compounds/chemistry , Chemical Fractionation/instrumentation , Cyperus/enzymology , Female , Flavonoids/pharmacology , Gram-Negative Bacteria/drug effects , Malondialdehyde/metabolism , Mice , Mice, Inbred Strains , Microbial Sensitivity Tests , Picrates/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plant Leaves/enzymology , Pressure , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...