Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Extracell Vesicles ; 13(6): e12465, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887984

ABSTRACT

Exosomes are secreted vesicles made intracellularly in the endosomal system. We have previously shown that exosomes are not only made in late endosomes, but also in recycling endosomes marked by the monomeric G-protein Rab11a. These vesicles, termed Rab11a-exosomes, are preferentially secreted under nutrient stress from several cancer cell types, including HCT116 colorectal cancer (CRC) cells. HCT116 Rab11a-exosomes have particularly potent signalling activities, some mediated by the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). Mutant activating forms of KRAS, a downstream target of EGFR, are often found in advanced CRC. When absent, monoclonal antibodies, such as cetuximab, which target the EGFR and block the effects of EGFR ligands, such as AREG, can be administered. Patients, however, inevitably develop resistance to cetuximab, either by acquiring KRAS mutations or via non-genetic microenvironmental changes. Here we show that nutrient stress in several CRC cell lines causes the release of AREG-carrying Rab11a-exosomes. We demonstrate that while soluble AREG has no effect, much lower levels of AREG bound to Rab11a-exosomes from cetuximab-resistant KRAS-mutant HCT116 cells, can suppress the effects of cetuximab on KRAS-wild type Caco-2 CRC cells. Using neutralising anti-AREG antibodies and an intracellular EGFR kinase inhibitor, we show that this effect is mediated via AREG activation of EGFR, and not transfer of activated KRAS. Therefore, presentation of AREG on Rab11a-exosomes affects its ability to compete with cetuximab. We propose that this Rab11a-exosome-mediated mechanism contributes to the establishment of resistance in cetuximab-sensitive cells and may explain why in cetuximab-resistant tumours only some cells carry mutant KRAS.


Subject(s)
Amphiregulin , Cetuximab , Colorectal Neoplasms , Drug Resistance, Neoplasm , Exosomes , rab GTP-Binding Proteins , Humans , Amphiregulin/metabolism , Cetuximab/pharmacology , Exosomes/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , rab GTP-Binding Proteins/metabolism , ErbB Receptors/metabolism , HCT116 Cells , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , Stress, Physiological , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/drug effects
3.
J Extracell Vesicles ; 12(3): e12311, 2023 03.
Article in English | MEDLINE | ID: mdl-36872252

ABSTRACT

Exosomes are secreted nanovesicles with potent signalling activity that are initially formed as intraluminal vesicles (ILVs) in late Rab7-positive multivesicular endosomes, and also in recycling Rab11a-positive endosomes, particularly under some forms of nutrient stress. The core proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) participate in exosome biogenesis and ILV-mediated destruction of ubiquitinylated cargos. Accessory ESCRT-III components have reported roles in ESCRT-III-mediated vesicle scission, but their precise functions are poorly defined. They frequently only appear essential under stress. Comparative proteomics analysis of human small extracellular vesicles revealed that accessory ESCRT-III proteins, CHMP1A, CHMP1B, CHMP5 and IST1, are increased in Rab11a-enriched exosome preparations. We show that these proteins are required to form ILVs in Drosophila secondary cell recycling endosomes, but unlike core ESCRTs, they are not involved in degradation of ubiquitinylated proteins in late endosomes. Furthermore, CHMP5 knockdown in human HCT116 colorectal cancer cells selectively inhibits Rab11a-exosome production. Accessory ESCRT-III knockdown suppresses seminal fluid-mediated reproductive signalling by secondary cells and the growth-promoting activity of Rab11a-exosome-containing EVs from HCT116 cells. We conclude that accessory ESCRT-III components have a specific, ubiquitin-independent role in Rab11a-exosome generation, a mechanism that might be targeted to selectively block pro-tumorigenic activities of these vesicles in cancer.


Subject(s)
Exosomes , Extracellular Vesicles , Humans , Endosomes , Biological Transport , Endosomal Sorting Complexes Required for Transport
4.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33495334

ABSTRACT

Seminal fluid plays an essential role in promoting male reproductive success and modulating female physiology and behavior. In the fruit fly, Drosophila melanogaster, Sex Peptide (SP) is the best-characterized protein mediator of these effects. It is secreted from the paired male accessory glands (AGs), which, like the mammalian prostate and seminal vesicles, generate most of the seminal fluid contents. After mating, SP binds to spermatozoa and is retained in the female sperm storage organs. It is gradually released by proteolytic cleavage and induces several long-term postmating responses, including increased ovulation, elevated feeding, and reduced receptivity to remating, primarily signaling through the SP receptor (SPR). Here, we demonstrate a previously unsuspected SPR-independent function for SP. We show that, in the AG lumen, SP and secreted proteins with membrane-binding anchors are carried on abundant, large neutral lipid-containing microcarriers, also found in other SP-expressing Drosophila species. These microcarriers are transferred to females during mating where they rapidly disassemble. Remarkably, SP is a key microcarrier assembly and disassembly factor. Its absence leads to major changes in the seminal proteome transferred to females upon mating. Males expressing nonfunctional SP mutant proteins that affect SP's binding to and release from sperm in females also do not produce normal microcarriers, suggesting that this male-specific defect contributes to the resulting widespread abnormalities in ejaculate function. Our data therefore reveal a role for SP in formation of seminal macromolecular assemblies, which may explain the presence of SP in Drosophila species that lack the signaling functions seen in Dmelanogaster.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Lipids/chemistry , Microspheres , Semen/chemistry , Animals , Drosophila Proteins/genetics , Female , Intercellular Signaling Peptides and Proteins/genetics , Male , Mutation/genetics , Proteome/metabolism , Sexual Behavior, Animal , Species Specificity
5.
Br J Cancer ; 124(2): 494-505, 2021 01.
Article in English | MEDLINE | ID: mdl-33028955

ABSTRACT

BACKGROUND: Glutamine (Gln) is an abundant nutrient used by cancer cells. Breast cancers cells and particularly triple-receptor negative breast cancer (TNBC) are reported to be dependent on Gln to produce the energy required for survival and proliferation. Despite intense research on the role of the intracellular Gln pathway, few reports have focussed on Gln transporters in breast cancer and TNBC. METHODS: The role and localisation of the Gln transporter SLC38A2/SNAT2 in response to Gln deprivation or pharmacological stresses was examined in a panel of breast cancer cell lines. Subsequently, the effect of SLC38A2 knockdown in Gln-sensitive cell lines was analysed. The prognostic value of SLC38A2 in a cohort of breast cancer was determined by immunohistochemistry. RESULTS: SLC38A2 was identified as a strongly expressed amino acid transporter in six breast cancer cell lines. We confirmed an autophagic route of degradation for SLC38A2. SLC38A2 knockdown decreased Gln consumption, inhibited cell growth, induced autophagy and led to ROS production in a subgroup of Gln-sensitive cell lines. High expression of SLC38A2 protein was associated with poor breast cancer specific survival in a large cohort of patients (p = 0.004), particularly in TNBC (p = 0.02). CONCLUSIONS: These results position SLC38A2 as a selective target for inhibiting growth of Gln-dependent breast cancer cell lines.


Subject(s)
Amino Acid Transport System A/metabolism , Glutamine/metabolism , Oxidative Stress/physiology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Adult , Aged , Cell Line, Tumor , Female , Humans , Middle Aged , Prognosis
6.
EMBO J ; 39(16): e103009, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32720716

ABSTRACT

Exosomes are secreted extracellular vesicles carrying diverse molecular cargos, which can modulate recipient cell behaviour. They are thought to derive from intraluminal vesicles formed in late endosomal multivesicular bodies (MVBs). An alternate exosome formation mechanism, which is conserved from fly to human, is described here, with exosomes carrying unique cargos, including the GTPase Rab11, generated in Rab11-positive recycling endosomal MVBs. Release of Rab11-positive exosomes from cancer cells is increased relative to late endosomal exosomes by reducing growth regulatory Akt/mechanistic Target of Rapamycin Complex 1 (mTORC1) signalling or depleting the key metabolic substrate glutamine, which diverts membrane flux through recycling endosomes. Vesicles produced under these conditions promote tumour cell proliferation and turnover and modulate blood vessel networks in xenograft mouse models in vivo. Their growth-promoting activity, which is also observed in vitro, is Rab11a-dependent, involves ERK-MAPK-signalling and is inhibited by antibodies against amphiregulin, an EGFR ligand concentrated on these vesicles. Therefore, glutamine depletion or mTORC1 inhibition stimulates release from Rab11a compartments of exosomes with pro-tumorigenic functions, which we propose promote stress-induced tumour adaptation.


Subject(s)
Cell Proliferation , Exosomes , Glutamine/deficiency , MAP Kinase Signaling System , Neoplasms , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Exosomes/genetics , Exosomes/metabolism , Exosomes/pathology , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
7.
Front Pharmacol ; 9: 640, 2018.
Article in English | MEDLINE | ID: mdl-29971004

ABSTRACT

Solute Carriers (SLCs) are involved in the transport of substances across lipid bilayers, including nutrients like amino acids. Amino acids increase the activity of the microenvironmental sensor mechanistic Target of Rapamycin Complex 1 (mTORC1) to promote cellular growth and anabolic processes. They can be brought in to cells by a wide range of SLCs including the closely related Proton-assisted Amino acid Transporter (PAT or SLC36) and Sodium-coupled Neutral Amino acid Transporter (SNAT or SLC38) families. More than a decade ago, the first evidence emerged that members of the PAT family can act as amino acid-stimulated receptors, or so-called "transceptors," connecting amino acids to mTORC1 activation. Since then, further studies in human cell models have suggested that other PAT and SNAT family members, which share significant homology within their transmembrane domains, can act as transceptors. A paradigm shift has also led to the PATs and SNATs at the surface of multiple intracellular compartments being linked to the recruitment and activation of different pools of mTORC1. Much focus has been on late endosomes and lysosomes as mTORC1 regulatory hubs, but more recently a Golgi-localized PAT was shown to be required for mTORC1 activation. PATs and SNATs can also traffic between the cell surface and intracellular compartments, with regulation of this movement providing a means of controlling their mTORC1 regulatory activity. These emerging features of PAT and SNAT amino acid sensors, including the transceptor mechanism, have implications for the pharmacological inhibition of mTORC1 and new therapeutic interventions.

8.
PLoS Genet ; 12(10): e1006366, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27727275

ABSTRACT

Regulated secretion by glands and neurons involves release of signalling molecules and enzymes selectively concentrated in dense-core granules (DCGs). Although we understand how many secretagogues stimulate DCG release, how DCG biogenesis is then accelerated to replenish the DCG pool remains poorly characterised. Here we demonstrate that each prostate-like secondary cell (SC) in the paired adult Drosophila melanogaster male accessory glands contains approximately ten large DCGs, which are loaded with the Bone Morphogenetic Protein (BMP) ligand Decapentaplegic (Dpp). These DCGs can be marked in living tissue by a glycophosphatidylinositol (GPI) lipid-anchored form of GFP. In virgin males, BMP signalling is sporadically activated by constitutive DCG secretion. Upon mating, approximately four DCGs are typically released immediately, increasing BMP signalling, primarily via an autocrine mechanism. Using inducible knockdown specifically in adult SCs, we show that secretion requires the Soluble NSF Attachment Protein, SNAP24. Furthermore, mating-dependent BMP signalling not only promotes cell growth, but is also necessary to accelerate biogenesis of new DCGs, restoring DCG number within 24 h. Our analysis therefore reveals an autocrine BMP-mediated feedback mechanism for matching DCG release to replenishment as secretion rates fluctuate, and might explain why in other disease-relevant systems, like pancreatic ß-cells, BMP signalling is also implicated in the control of secretion.


Subject(s)
Bone Morphogenetic Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Secretory Vesicles/genetics , Animals , Autocrine Communication/genetics , Drosophila Proteins/biosynthesis , Drosophila melanogaster/growth & development , Gene Expression Regulation, Developmental/genetics , Male , Neurons/metabolism , Prostate/growth & development , Prostate/metabolism , Secretory Vesicles/metabolism , Sexual Behavior, Animal/physiology , Signal Transduction/genetics
9.
PLoS One ; 10(11): e0143818, 2015.
Article in English | MEDLINE | ID: mdl-26599788

ABSTRACT

Insulin/insulin-like growth factor signalling (IIS), acting primarily through the PI3-kinase (PI3K)/AKT kinase signalling cassette, plays key evolutionarily conserved regulatory roles in nutrient homeostasis, growth, ageing and longevity. The dysfunction of this pathway has been linked to several age-related human diseases including cancer, Type 2 diabetes and neurodegenerative disorders. However, it remains unclear whether minor defects in IIS can independently induce the age-dependent functional decline in cells that accompany some of these diseases or whether IIS alters the sensitivity to other aberrant signalling. We identified a novel hypomorphic allele of PI3K's direct antagonist, Phosphatase and tensin homologue on chromosome 10 (Pten), in the fruit fly, Drosophila melanogaster. Adults carrying combinations of this allele, Pten5, combined with strong loss-of-function Pten mutations exhibit subtle or no increase in mass, but are highly susceptible to a wide range of stresses. They also exhibit dramatic upregulation of the oxidative stress response gene, GstD1, and a progressive loss of motor function that ultimately leads to defects in climbing and flight ability. The latter phenotype is associated with mitochondrial disruption in indirect flight muscles, although overall muscle structure appears to be maintained. We show that the phenotype is partially rescued by muscle-specific expression of the Bcl-2 homologue Buffy, which in flies, maintains mitochondrial integrity, modulates energy homeostasis and suppresses cell death. The flightless phenotype is also suppressed by mutations in downstream IIS signalling components, including those in the mechanistic Target of Rapamycin Complex 1 (mTORC1) pathway, suggesting that elevated IIS is responsible for functional decline in flight muscle. Our data demonstrate that IIS levels must be precisely regulated by Pten in adults to maintain the function of the highly metabolically active indirect flight muscles, offering a new system to study the in vivo roles of IIS in the maintenance of mitochondrial integrity and adult ageing.


Subject(s)
Drosophila Proteins/metabolism , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Female , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Protein Binding , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction
10.
J Cell Biol ; 206(5): 671-88, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25154396

ABSTRACT

Male reproductive glands secrete signals into seminal fluid to facilitate reproductive success. In Drosophila melanogaster, these signals are generated by a variety of seminal peptides, many produced by the accessory glands (AGs). One epithelial cell type in the adult male AGs, the secondary cell (SC), grows selectively in response to bone morphogenetic protein (BMP) signaling. This signaling is involved in blocking the rapid remating of mated females, which contributes to the reproductive advantage of the first male to mate. In this paper, we show that SCs secrete exosomes, membrane-bound vesicles generated inside late endosomal multivesicular bodies (MVBs). After mating, exosomes fuse with sperm (as also seen in vitro for human prostate-derived exosomes and sperm) and interact with female reproductive tract epithelia. Exosome release was required to inhibit female remating behavior, suggesting that exosomes are downstream effectors of BMP signaling. Indeed, when BMP signaling was reduced in SCs, vesicles were still formed in MVBs but not secreted as exosomes. These results demonstrate a new function for the MVB-exosome pathway in the reproductive tract that appears to be conserved across evolution.


Subject(s)
Bone Morphogenetic Proteins/physiology , Drosophila Proteins/physiology , Exosomes/physiology , Genitalia, Male/metabolism , Animals , Drosophila melanogaster , Epithelial Cells/metabolism , Female , Genitalia, Female/cytology , Lysosomes/metabolism , Male , Membrane Fusion , Membrane Microdomains/metabolism , Multivesicular Bodies/metabolism , Protein Transport , Secretory Vesicles/metabolism , Sexual Behavior, Animal , Signal Transduction , Spermatozoa/metabolism , Tetraspanin 30/metabolism , Vacuoles/metabolism
11.
PLoS One ; 6(5): e20612, 2011.
Article in English | MEDLINE | ID: mdl-21655181

ABSTRACT

mRNA localization coupled with translational control is a widespread and conserved strategy that allows the localized production of proteins within eukaryotic cells. In Drosophila, oskar (osk) mRNA localization and translation at the posterior pole of the oocyte are essential for proper patterning of the embryo. Several P body components are involved in osk mRNA localization and translational repression, suggesting a link between P bodies and osk RNPs. In cultured mammalian cells, Ge-1 protein is required for P body formation. Combining genetic, biochemical and immunohistochemical approaches, we show that, in vivo, Drosophila Ge-1 (dGe-1) is an essential gene encoding a P body component that promotes formation of these structures in the germline. dGe-1 partially colocalizes with osk mRNA and is required for osk RNP integrity. Our analysis reveals that although under normal conditions dGe-1 function is not essential for osk mRNA localization, it becomes critical when other components of the localization machinery, such as staufen, Drosophila decapping protein 1 and barentsz are limiting. Our findings suggest an important role of dGe-1 in optimization of the osk mRNA localization process required for patterning the Drosophila embryo.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , RNA, Messenger/metabolism , Animals , Animals, Genetically Modified , Blotting, Western , Caspases , Drosophila/genetics , Drosophila Proteins/genetics , Immunoprecipitation , In Situ Hybridization, Fluorescence , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction
12.
Dev Cell ; 10(5): 601-13, 2006 May.
Article in English | MEDLINE | ID: mdl-16678775

ABSTRACT

In Drosophila, posterior deposition of oskar (osk) mRNA in oocytes is critical for both pole cell and abdomen formation. Exon junction complex components, translational regulation factors, and other proteins form an RNP complex that is essential for directing osk mRNA to the posterior of the oocyte. Until now, it has not been clear whether the mRNA degradation machinery is involved in regulating osk mRNA deposition. Here we show that Drosophila decapping protein 1, dDcp1, is a posterior group gene required for the transport of osk mRNA. In oocytes, dDcp1 is localized posteriorly in an osk mRNA position- and dosage-dependent manner. In nurse cells, dDcp1 colocalizes with dDcp2 and Me31B in discrete foci that may be related to processing bodies (P bodies), which are sites of active mRNA degradation. Thus, as well as being a general factor required for mRNA decay, dDcp1 is an essential component of the osk mRNP localization complex.


Subject(s)
Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Oocytes/metabolism , Ribonucleoproteins/metabolism , Amino Acid Sequence , Animals , Caspases , Cytoplasm/metabolism , DNA-Binding Proteins/metabolism , Drosophila melanogaster/cytology , Egg Proteins/metabolism , Genes, Insect/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Molecular Sequence Data , Protein Transport , RNA Stability , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoproteins/chemistry , Sequence Alignment , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...