Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmacol Res ; 200: 107052, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181857

ABSTRACT

BACKGROUND: The efficacy and safety of Qingda granule (QDG) in managing blood pressure (BP) among grade 1 hypertensive patients with low-moderate risk remain uncertain. METHODS: In the randomized, double-blind, double dummy, non-inferiority and multicenter trial, 552 patients with grade 1 hypertension at low-moderate risk were assigned at a ratio of 1:1 to receive either QDG or valsartan for 4 weeks, followed up by a subsequent 4 weeks. RESULTS: Post-treatment, clinic systolic/diastolic BPs (SBP/DBP) were reduced by a mean change of 9.18/4.04 mm Hg in the QDG group and 9.85/5.05 mm Hg in the valsartan group (SBP P = 0.47, DBP P = 0.16). Similarly, 24-hour, daytime and nighttime BPs were proportional in both groups (P > 0.05) after 4 weeks treatment. After discontinuing medications for 4 weeks, the mean reduction of clinic SBP/DBP were 0.29/0.57 mm Hg in the QDG group compared to -1.59/-0.48 mm Hg in the valsartan group (SBP P = 0.04, DBP P = 0.04). Simultaneously, the 24-hour SBP/DBP were reduced by 0.9/0.31 mm Hg in the QDG group and -1.66/-1.08 mm Hg in the valsartan group (SBP P = 0.006, DBP P = 0.02). And similar results were observed regarding the outcomes of daytime and nighttime BPs. There was no difference in occurrence of adverse events between two groups (P > 0.05). CONCLUSION: QDG proves to be efficacious for grade 1 hypertension at a low-to-medium risk, even after discontinuation of the medication for 4 weeks. These findings provide a promising option for managing grade 1 hypertension and suggest the potential for maintaining stable BP through intermittent administration of QDG. TRIAL REGISTRATION: ChiCTR2000033890.


Subject(s)
Antihypertensive Agents , Drugs, Chinese Herbal , Hypertension , Humans , Antihypertensive Agents/adverse effects , Blood Pressure , China , Double-Blind Method , Tetrazoles/adverse effects , Valsartan/adverse effects
2.
World J Microbiol Biotechnol ; 30(7): 1947-54, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24510385

ABSTRACT

Mycobacterium neoaurum NwIB-01 exhibits powerful ability to cleave the side chain of soybean phytosterols to accumulate 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD). The difficulty in separation of AD from ADD is one of the key bottlenecks to the microbial transformation of phytosterols in the industry. To enhance ADD quantity in products, 3-ketosteroid Δ(1)-dehydrogenase genes (kstD M and kstD(A)) were obtained from M. neoaurum NwIB-01 and Arthrobacter simplex respectively. Using replicating vector pMV261, kstD(M) and kstD(A) were overexpressed in M. neoaurum NwIB-01. For foreign gene stable expression, the integration vector pMV306 was used for kstD M/kstD(A) overexpression and the relevant sequences of promoter and kanamycin antibiotic resistance gene sequences were amplified by PCR to verify plasmid integrity. The resultant plasmid and mutant strain were verified and the kstD augmentation mutants were good ADD-producing strains. The ADD producing capacity of NwIB-04 and NwIB-05 was 0.1401 and 0.1740 g/l (cultured in shake bottles with 0.4 g/l phytosterols), and the molar ratio of ADD in products was 98.34 and 98.60%, respectively. This study on the manipulation of the main kstDM gene in Mycobacterium sp. provides a feasible way to achieve excellent phytosterol-transformation strains with high product purity.


Subject(s)
Androstenedione/metabolism , Bacterial Proteins/metabolism , Mycobacterium/enzymology , Mycobacterium/metabolism , Oxidoreductases/metabolism , Bacterial Proteins/genetics , Mycobacterium/genetics , Oxidoreductases/genetics , Phytosterols/metabolism
3.
Appl Environ Microbiol ; 76(13): 4578-82, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20453136

ABSTRACT

3-Ketosteroid-Delta(1)-dehydrogenase, KsdD(M), was identified by targeted gene disruption and augmentation from Mycobacterium neoaurum NwIB-01, a newly isolated strain. The difficulty of separating 4-androstene-3,17-dione (AD) from 1,4-androstadiene-3,17-dione (ADD) is a key bottleneck to the microbial transformation of phytosterols in industry. This problem was tackled via genetic manipulation of the KsdD-encoding gene. Mutants in which KsdD(M) was inactivated or augmented proved to be good AD(D)-producing strains.


Subject(s)
Androstadienes/metabolism , Androstenedione/metabolism , Biotechnology/methods , Glycine max/metabolism , Mycobacterium/enzymology , Oxidoreductases/metabolism , Phytosterols/metabolism , Amino Acid Sequence , Cloning, Molecular , Gene Deletion , Genetic Engineering/methods , Molecular Sequence Data , Mycobacterium/classification , Mycobacterium/genetics , Mycobacterium/isolation & purification , Oxidoreductases/genetics , Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL