Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 210: 108611, 2024 May.
Article in English | MEDLINE | ID: mdl-38615439

ABSTRACT

A high content of anthocyanin in blueberry (Vaccinium corymbosum) is an important indicator to evaluate fruit quality. Abscisic acid (ABA) can promote anthocyanin biosynthesis, but since the molecular mechanism is unclear, clarifying the mechanism will improve for blueberry breeding and cultivation regulation. VcbZIP55 regulating anthocyanin synthesis in blueberry were screened and mined using the published Isoform-sequencing, RNA-Seq and qRT-PCR at different fruit developmental stages. Blueberry genetic transformation and transgenic experiments confirmed that VcbZIP55 could promote anthocyanin biosynthesis in blueberry adventitious buds, tobacco leaves, blueberry leaves and blueberry fruit. VcbZIP55 responded to ABA signals and its expression was upregulated in blueberry fruit. In addition, using VcbZIP55 for Yeast one hybrid assay (Y1H) and transient expression in tobacco leaves demonstrated an interaction between VcbZIP55 and a G-Box motif on the VcMYB1 promoter to activate the expression of VcMYB1. This study will lay the theoretical foundation for the molecular mechanisms of phytohormone regulation responsible for anthocyanin synthesis and provide theoretical support for blueberry quality improvement.


Subject(s)
Abscisic Acid , Anthocyanins , Blueberry Plants , Gene Expression Regulation, Plant , Plant Proteins , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Abscisic Acid/metabolism , Blueberry Plants/genetics , Blueberry Plants/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Signal Transduction , Plants, Genetically Modified/metabolism , Nicotiana/metabolism , Nicotiana/genetics , Fruit/metabolism , Fruit/genetics
2.
Foods ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38672922

ABSTRACT

SO2 plays an important role in wine fermentation, and its effects on wine aroma are complex and diverse. In order to investigate the effects of different SO2 additions on the fermentation process, quality, and flavor of 'Beibinghong' ice wine, we fermented 'Beibinghong' picked in 2019. We examined the fermentation rate, basic physicochemical properties, and volatile aroma compound concentrations of 'Beibinghong' ice wine under different SO2 additions and constructed a fingerprint of volatile compounds in ice wine. The results showed that 44 typical volatile compounds in 'Beibinghong' ice wine were identified and quantified. The OAV and VIP values were calculated using the threshold values of each volatile compound, and t the effect of SO2 on the volatile compounds of 'Beibinghong' ice wine might be related to five aroma compounds: ethyl butyrate, ethyl propionate, ethyl 3-methyl butyrate-M, ethyl 3-methyl butyrate-D, and 3-methyl butyraldehyde. Tasting of 'Beibinghong' ice wine at different SO2 additions revealed that the overall flavor of 'Beibinghong' ice wine was the highest at an SO2 addition level of 30 mg/L. An SO2 addition level of 30 mg/L was the optimal addition level. The results of this study are of great significance for understanding the effect of SO2 on the fermentation of 'Beibinghong' ice wine.

3.
Life (Basel) ; 14(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276278

ABSTRACT

The seasonal changes in environmental conditions can alter the growth states of host plants, thereby affecting the living environment of endophytes and forming different endophytic communities. This study employs Illumina MiSeq next-generation sequencing to analyze the 16SrRNA and ITS rDNA of endophytes in 24 samples of Actinidia arguta stem tissues across different seasons. The results revealed a high richness and diversity of endophytes in Actinidia arguta, with significant seasonal variations in microbial community richness. This study identified 897 genera across 36 phyla for bacteria and 251 genera across 8 phyla for fungi. Notably, 69 bacterial genera and 19 fungal genera significantly contributed to the differences in community structure across seasons. A distinctive feature of coexistence in the endophytic community, both specific and conservative across different seasons, was observed. The bacterial community in winter demonstrated significantly higher richness and diversity compared to the other seasons. Environmental factors likely influence the optimal timing for endophyte colonization. Solar radiation, temperature, precipitation, and relative humidity significantly impact the diversity of endophytic bacteria and fungi. In addition, seasonal variations show significant differences in the nutritional modes of fungal endophytes and the degradation, ligninolysis, and ureolysis functions of bacterial endophytes. This study elucidates the potential role of endophytes in assisting Actinidia arguta in adapting to seasonal changes and provides a theoretical basis for further exploration of functional microbial strains.

4.
Molecules ; 28(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38005281

ABSTRACT

Actinidia arguta is a fruit crop with high nutritional and economic value. However, its flavor quality depends on various factors, such as variety, environment, and post-harvest handling. We analyzed the composition of total soluble sugars, titratable acids, organic acids, and flavor substances in the fruits of ten A. arguta varieties. The total soluble sugar content ranged from 4.22 g/L to 12.99 g/L, the titratable acid content ranged from 52.55 g/L to 89.9 g/L, and the sugar-acid ratio ranged from 5.39 to 14.17 at the soft ripe stage. High-performance liquid chromatography (HPLC) showed that citric, quinic, and malic acids were the main organic acids in the A. arguta fruits. Headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) detected 81 volatile compounds in 10 A. arguta varieties, including 24 esters, 17 alcohols, 23 aldehydes, 7 ketones, 5 terpenes, 2 acids, 1 Pyrazine, 1 furan, and 1 benzene. Esters and aldehydes had the highest relative content of total volatile compounds. An orthogonal partial least squares discriminant analysis (OPLS-DA) based on the odor activity value (OAV) revealed that myrcene, benzaldehyde, methyl isobutyrate, α-phellandrene, 3-methyl butanal, valeraldehyde, ethyl butyrate, acetoin, (E)-2-octenal, hexyl propanoate, terpinolene, 1-penten-3-one, and methyl butyrate were the main contributors to the differences in the aroma profiles of the fruits of different A. arguta varieties. Ten A. arguta varieties have different flavors. This study can clarify the differences between varieties and provide a reference for the evaluation of A. arguta fruit flavor, variety improvement and new variety selection.


Subject(s)
Actinidia , Volatile Organic Compounds , Chromatography, High Pressure Liquid , Fruit/chemistry , Actinidia/chemistry , Gas Chromatography-Mass Spectrometry/methods , Ion Mobility Spectrometry , Volatile Organic Compounds/analysis , Aldehydes/analysis , Odorants/analysis , Esters/analysis , Sugars/analysis
5.
Molecules ; 28(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836708

ABSTRACT

To investigate the volatile components of Schisandra chinensis (Turcz.) Bail (commonly known as northern Schisandra) of different colors and to explore their similarities and differences, to identify the main flavor substances in the volatile components of the branch exudates of northern schisandra, and finally to establish a fingerprint map of the volatile components of the dried fruits and branch exudates of northern Schisandra of different colors, we used GC-IMS technology to analyze the volatile components of the dried fruits and branch exudates of three different colors of northern Schisandra and established a fingerprint spectra. The results showed that a total of 60 different volatile chemical components were identified in the branch exudates and dried fruits of Schisandra. The components of germplasm resources with different fruit colors were significantly different. The ion mobility spectrum and OPLS-DA results showed that white and yellow fruits were more similar compared to red fruits. The volatile components in dried fruits were significantly higher than those in branch exudates. After VIP (variable importance in projection) screening, 41 key volatile substances in dried fruits and 30 key volatile substances in branch exudates were obtained. After screening by odor activity value (OAV), there were 24 volatile components greater than 1 in both dried fruits and branch exudates. The most important contributing volatile substance was 3-methyl-butanal, and the most important contributing volatile substance in white fruit was (E)-2-hexenal.


Subject(s)
Lignans , Schisandra , Schisandra/chemistry , Fruit/chemistry , Lignans/chemistry , Plant Extracts/chemistry
6.
Foods ; 12(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37835267

ABSTRACT

Actinidia arguta, known for its distinctive flavor and high nutritional value, has seen an increase in cultivation and variety identification. However, the characterization of its volatile aroma compounds remains limited. This study aimed to understand the flavor quality and key volatile aroma compounds of different A. arguta fruits. We examined 35 A. arguta resource fruits for soluble sugars, titratable acids, and sugar-acid ratios. Their organic acids and volatile aroma compounds were analyzed using high-performance liquid chromatography (HPLC) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). The study found that among the 35 samples tested, S12 had a higher sugar-acid ratio due to its higher sugar content despite having a high titratable acid content, making its fruit flavor superior to other sources. The A. arguta resource fruits can be classified into two types: those dominated by citric acid and those dominated by quinic acid. The analysis identified a total of 76 volatile aroma substances in 35 A. arguta resource fruits. These included 18 esters, 14 alcohols, 16 ketones, 12 aldehydes, seven terpenes, three pyrazines, two furans, two acids, and two other compounds. Aldehydes had the highest relative content of total volatile compounds. Using the orthogonal partial least squares discriminant method (OPLS-DA) analysis, with the 76 volatile aroma substances as dependent variables and different soft date kiwifruit resources as independent variables, 33 volatile aroma substances with variable importance in projection (VIP) greater than 1 were identified as the main aroma substances of A. arguta resource fruits. The volatile aroma compounds with VIP values greater than 1 were analyzed for odor activity value (OAV). The OAV values of isoamyl acetate, 3-methyl-1-butanol, 1-hexanol, and butanal were significantly higher than those of the other compounds. This suggests that these four volatile compounds contribute more to the overall aroma of A. arguta. This study is significant for understanding the differences between the fruit aromas of different A. arguta resources and for scientifically recognizing the characteristic compounds of the fruit aromas of different A. arguta resources.

7.
Foods ; 12(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37761054

ABSTRACT

Actinidia arguta wine is a low-alcoholic beverage brewed from A. arguta with a unique flavor and sweet taste. In this study, the basic physicochemical indicators, color, organic acid, and volatile aroma components of wines made from the A. arguta varieties 'Kuilv', 'Fenglv', 'Jialv', 'Wanlv', 'Xinlv', 'Pinglv', 'Lvbao', 'Cuiyu', 'Tianxinbao', and 'Longcheng No.2' were determined, and a sensory evaluation was performed. The findings show that 'Tianxinbao' produced the driest extract (49.59 g/L), 'Kuilv' produced the most Vitamin C (913.46 mg/L) and total phenols (816.10 mg/L), 'Jialv' produced the most total flavonoids (477.12 mg/L), and 'Cuiyu' produced the most tannins (4.63 g/L). We analyzed the color of the A. arguta wines based on CIEL*a*b* parameters and found that the 'Kuilv' and 'Longcheng No.2' wines had the largest L* value (31.65), the 'Pinglv' wines had the greatest a* value (2.88), and the 'Kuilv' wines had the largest b* value (5.08) and C*ab value (5.66) of the ten samples. A total of eight organic acids were tested in ten samples via high-performance liquid chromatography (HPLC), and we found that there were marked differences in the organic acid contents in different samples (p < 0.05). The main organic acids were citric acid, quinic acid, and malic acid. The aroma description of a wine is one of the keys to its quality. A total of 51 volatile compounds were identified and characterized in ten samples with headspace gas chromatography-ion mobility spectrometry, including 24 esters, 12 alcohols, 9 aldehydes, 3 aldehydes, 2 terpenes, and 1 acid, with the highest total volatile compound content in 'Fenglv'. There were no significant differences in the types of volatile compounds, but there were significant differences in the contents (p < 0.05). An orthogonal partial least squares discriminant analysis (OPLS-DA) based on the odor activity value (OAV) showed that ethyl butanoate, ethyl pentanoate, ethyl crotonate, ethyl isobutyrate, butyl butanoate, 2-methylbutanal, ethyl isovalerate, and ethyl hexanoate were the main odorant markers responsible for flavor differences between all the A. arguta wines. Sensory evaluation is the most subjective and effective way for consumers to judge A. arguta wine quality. A quantitative descriptive analysis (QDA) of the aroma profiles of ten grapes revealed that the 'fruity' and 'floral' descriptors are the main and most essential parts of the overall flavor of A. arguta wines. 'Tianxinbao' had the highest total aroma score. The flavor and quality of A. arguta wines greatly depend on the type and quality of the A. arguta raw material. Therefore, high-quality raw materials can improve the quality of A. arguta wines. The results of the study provide a theoretical basis for improving the quality of A. arguta wines and demonstrate the application prospects of HS-GC-IMS in detecting A. arguta wine flavors.

8.
Plant Dis ; 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33728949

ABSTRACT

Vitis amurensis Rupr. (Amur grape) is a wild grape genetic resource widely distributed in Heilongjiang, Jilin, Liaoning, and Inner Mongolia, among other places in China (Song et al. 2009) and the Russian Far East and Korean Peninsula. In September 2018, brown rot symptoms were observed at ripening stage on the fruits of a 5-year-old Amur grapevine germplasm resources nursery of the cultivar 'Beibinghong' and a few Russian resources in Zuojia Town, Jilin City, Jilin Province, China. The diseased fruit surface became brown with soft rot and produced buff to brownish-grey sporodochia with conidia. Around 180 plants of 'Beibinghong' were examined which had 8 % incidence. Forty five samples were collected from symptomatic fruits of 15 randomly sampled 'Beibinghong' grape clusters, cut into 5-mm2 pieces of diseased tissue, surface sterilized with 1% NaOCl for 2 min, rinsed three times with sterile water, dried on sterilized filter paper, and plated on potato dextrose agar (PDA). Thirteen monosporic isolates were obtained using the single-spore isolation method with incubation at 25°C and a 12-h light/12-h dark cycle. The average colony diameter was 46-49 mm after 4 days of culture on PDA. Colonies were white to grayish with even margins. Irregular black stromatal crusts were observed on the reverse side of dishes 10 days after inoculation. Conidial spores were produced when cultured on cherry agar at 25°C under near-ultravolet light. Spores were single-celled and hyaline, limoniform or ellipsoid, and were produced in branched monilioid chains, 12-22 × 8-13 µm (mean: 15.4 ± 1.03 × 9.01 ± 0.72 µm, n = 50). When conidia were cultured on water agar at 25°C for 18 h, the germ tubes were straight, 700-1,000 µm long, and often with two germ tubes per conidium. Morphological characteristics were consistent with those of Monilinia polystroma (van Leeuwen et al. 2002). To confirm the species identification, two DNA regions of the selected isolate 'VAMPWYZSH8' were amplified by polymerase chain reaction (PCR) and sequenced: the internal transcribed spacer region (ITS) was generated using primers ITS1/ ITS4 (Munda 2015) and ß-tubulin (TUB2) was amplified using primers Bt2a/Bt2b (Zhu et al. 2016). A BLAST analysis of the nucleotide sequence of the PCR products revealed 100% identity with two M. polystroma sequences in the NCBI GenBank (KJ814976 for ITS, KR778970 for TUB2). Our sequences were deposited in GenBank with accession nos. MT038413 for ITS and MT038414 for TUB2. On the basis of these results, the isolate was identified as M. polystroma. To confirm pathogenicity, 78 fresh and healthy bunches of 'Beibinghong' grapes at ripening were collected, surface disinfected by immersion in 1% NaOCl for 1 min, rinsed three times with sterile water, then allowed to air dry. Under dry aseptic conditions, the fruits were inoculated using the pin prick method. Each wound was inoculated with 10 µl conidial suspension (106 spore ml-1) and incubated at 25°C with about 90% relative humidity and natural light. Inoculation with water was used as control and the experiment was repeated three times. After a 10-day incubation, typical symptoms of brown rot developed on inoculated fruits, while control fruits were symptomless. The fungus was consistently re-isolated only from diseased fruits and showed the same morphological characteristics as the original isolates, thus fulfilling Koch's postulates. This is the first report of M. polystroma on V. amurensis in China. The resulting disease decreases fruit quality and yield, necessitating the development of effective control measures.

9.
Front Genet ; 12: 727260, 2021.
Article in English | MEDLINE | ID: mdl-35003203

ABSTRACT

In the past decade, progress has been made in sex determination mechanism in Vitis. However, genes responsible for sexual differentiation and its mechanism in V. amurensis remain unknown. Here, we identify a sex determination candidate gene coding adenine phosphoribosyl transferase 3 (VaAPRT3) in V. amurensis. Cloning and sequencing of the VaAPRT3 gene allowed us to develop a molecular marker able to discriminate female individuals from males or hermaphrodites based on a 22-bp InDel. Gene expression and endogenous cytokinin content analysis revealed that the VaAPRT3 gene is involved in sex determination or, to be precise, in female organ differentiation, through regulating cytokinin metabolism in V. amurensis. This study enlarged the understanding of sex determination mechanism in the genus Vitis, and the sex marker could be used as a helpful tool for sexual identification in breeding programs as well as in investigation and collection of V. amurensis germplasms.

SELECTION OF CITATIONS
SEARCH DETAIL
...