Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37513393

ABSTRACT

The process of Fischer-Tropsch synthesis is commonly described as a series of reactions in which CO and H2 are dissociated and adsorbed on the metals and then rearranged to produce hydrocarbons and H2O. However, CO dissociation adsorption is regarded as the initial stage of Fischer-Tropsch synthesis and an essential factor in the control of catalytic activity. Several pathways have been proposed to activate CO, namely direct CO dissociation, activation hydrogenation, and activation by insertion into growing chains. In addition, H2O is considered an important by-product of Fischer-Tropsch synthesis reactions and has been shown to play a key role in regulating the distribution of Fischer-Tropsch synthesis products. The presence of H2O may influence the reaction rate, the product distribution, and the deactivation rate. Focus on H2O molecules and H2O-derivatives (H*, OH* and O*) can assist CO activation hydrogenation on Fe- and Co-based catalysts. In this work, the intermediates (C*, O*, HCO*, COH*, COH*, CH*, etc.) and reaction pathways were analyzed, and the H2O and H2O derivatives (H*, OH* and O*) on Fe- and Co-based catalysts and their role in the Fischer-Tropsch synthesis reaction process were reviewed.

2.
Molecules ; 27(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36364049

ABSTRACT

Biodiesel is generally produced from vegetable oils and methanol, which also generates glycerol as byproduct. To improve the overall economic performance of the process, the selective formation of methanol from glycerol is important in biodiesel production. In the present study, a CaO modified HZSM-5 zeolite was prepared by an impregnation method and used for the conversion of glycerol to methanol. We found that the 10%CaO/HZSM-5 with Si/Al ratio of 38 exhibited highest selectivity to methanol of 70%, with a glycerol conversion of 100% under 340 ℃ and atmospheric pressure. The characterization results showed that the introduction of a small amount of CaO into the HZSM-5 did not affect the structure of zeolite. The incorporation of HZSM-5 as an acidic catalyst and CaO as a basic catalyst in a synergistic catalysis system led to higher conversion of glycerol and selectivity of methanol.


Subject(s)
Zeolites , Methanol/chemistry , Biofuels , Glycerol , Catalysis
3.
Chemistry ; 26(39): 8532-8535, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32347999

ABSTRACT

Herein, a simple and green quasi-solid-phase (QSP) method for facile synthesis of proton-type ZSM-5 avoiding use of excessive water, dry gel, Na+ cation and fluoride is reported. Crystallization by using the stoichiometric amount of TPAOH (tetrapropylammonium hydroxide) at 180 °C for only 12 h gave well-structured HZSM-5 crystals with high specific surface area of 429 m2 g-1 and high thermal stability. 5MRs was observed to closely relate the formation of MFI structure and QSP method exhibits shorter induction period (t0 ), higher nucleation rate (Vn ), and faster growth rate (Vg ). Moreover, HZ-12-180 showed extremely better and rather stable catalytic activity for methanol-to-propylene reaction by comparison with commercial HZSM-5.

4.
Water Sci Technol ; 79(6): 1042-1050, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31070584

ABSTRACT

Herein, we prepared Cu(II)-modified hierarchical ZSM-5 containing both micro- and mesopores by alkali treatment followed by ion exchange as an adsorbent, using it for tetracycline (TC) removal from aqueous solutions. The crystal structure, morphology, texture, and Si:Al ratio of this adsorbent by a range of instrumental techniques were investigated. Moreover, we studied the effect of pH and Cu(II) loading on adsorption performance and probed adsorption kinetics, thermodynamics and regeneration performance, revealing that modification of hierarchical ZSM-5 with Cu(II) not only significantly increased its TC removal efficiency but also allowed for good regenerability and suggested that the highly efficient and selective removal of TC from aqueous solutions could be ascribed to not only the strong interactions between Cu(II) and TC molecular but also the larger mesoporosity.


Subject(s)
Copper/chemistry , Tetracycline/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Kinetics , Solutions , Tetracycline/analysis , Water , Water Pollutants, Chemical/analysis
5.
Chem Soc Rev ; 48(3): 885-907, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30601526

ABSTRACT

Aluminosilicate zeolites with controllable morphology have attracted considerable attention due to their potential applications in catalysis, adsorption, and separation technologies, as well as the biomedical field. However, the rational design and preparation of zeolites with the required morphology have not been achieved because the zeolite crystallization mechanism has not been fully understood, and therefore, the nucleation and crystal growth processes cannot be oriented. This paper reviews the progresses achieved in zeolite morphology control. The chemical compositions of the synthesis gel, including template (or the structure-directing agent) and framework heteroatoms, silica and alumina sources, alkali metal cations and mineralization ions, crystallization conditions, and synthesis methods have a considerable impact on the crystal morphology. The oriented assembly of zeolite crystals into special morphologies, such as hierarchical porous structures, zeolite membranes, hollow zeolite spheres, and core@shell-structured zeolites, can be realized by using soft and/or hard template methods and adjusting the synthesis and crystallization conditions. In addition, zeolite crystallization and crystal assembly mechanisms are investigated for providing an overall insight into the regulation of zeolite crystal morphology.

6.
Water Sci Technol ; 75(5-6): 1221-1232, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28272051

ABSTRACT

The removal of oxytetracycline (OTC) from aqueous solution on modified molecular sieve via adsorption was investigated in the present work. The copper(II) modified molecular sieve had the much higher adsorbed amount than unmodified one. The bigger pore, the more adsorption sites benefitted for the adsorbed amount of OTC. The exchanged amount of copper(II) and the acid-base property of solution were important factors influencing the removal efficiency. The adsorption kinetics, the adsorption isotherm, the adsorption thermodynamics and the proposed adsorption mechanism were studied. The analysis of adsorption isotherm indicated it is a monolayer adsorption. The fitting with adsorption kinetics, pseudo-second-order model, deduced chemical adsorption is the main rate controlling step. And the new formation of Cu-O chemical bond and the changes at bands of N-H vibration and C-N vibration by Fourier transform infrared spectrometer further confirmed the proposal adsorption mechanism was the chemical complexation of copper(II) in modified 13X with NH2 group of OTC. As the real exchanged amount of copper(II) was 149.07 mg·g-1 and the solution pH 7.0, the adsorption capacity of modified 13X for OTC reached the maximum of 2,396 mg·g-1 (with the initial concentration of 1,000 mg·L-1).


Subject(s)
Oxytetracycline/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/instrumentation , Acids/chemistry , Adsorption , Copper/chemistry , Diffusion , Hydrogen-Ion Concentration , Kinetics , Models, Theoretical , Solutions , Spectroscopy, Fourier Transform Infrared , Temperature , Thermodynamics , Time Factors , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...