Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Geophys Res Atmos ; 127(16): e2021JD035664, 2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36582815

ABSTRACT

Frontal boundaries have been shown to cause large changes in CO2 mole-fractions, but clouds and the complex vertical structure of fronts make these gradients difficult to observe. It remains unclear how the column average CO2 dry air mole-fraction (XCO2) changes spatially across fronts, and how well airborne lidar observations, data assimilation systems, and numerical models without assimilation capture XCO2 frontal contrasts (ΔXCO2, i.e., warm minus cold sector average of XCO2). We demonstrated the potential of airborne Multifunctional Fiber Laser Lidar (MFLL) measurements in heterogeneous weather conditions (i.e., frontal environment) to investigate the ΔXCO2 during four seasonal field campaigns of the Atmospheric Carbon and Transport-America (ACT-America) mission. Most frontal cases in summer (winter) reveal higher (lower) XCO2 in the warm (cold) sector than in the cold (warm) sector. During the transitional seasons (spring and fall), no clear signal in ΔXCO2 was observed. Intercomparison among the MFLL, assimilated fields from NASA's Global Modeling and Assimilation Office (GMAO), and simulations from the Weather Research and Forecasting--Chemistry (WRF-Chem) showed that (a) all products had a similar sign of ΔXCO2 though with different levels of agreement in ΔXCO2 magnitudes among seasons; (b) ΔXCO2 in summer decreases with altitude; and (c) significant challenges remain in observing and simulating XCO2 frontal contrasts. A linear regression analyses between ΔXCO2 for MFLL versus GMAO, and MFLL versus WRF-Chem for summer-2016 cases yielded a correlation coefficient of 0.95 and 0.88, respectively. The reported ΔXCO2 variability among four seasons provide guidance to the spatial structures of XCO2 transport errors in models and satellite measurements of XCO2 in synoptically-active weather systems.

2.
Opt Express ; 23(11): A582-93, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26072883

ABSTRACT

This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-µm CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively. For the case of intervening thin cirrus clouds with an average cloud optical depth of about 0.16 over an arid/semi-arid area, the CO2 column measurements from 12.2 km altitude were found to be consistent with the cloud free conditions with a lower precision due to the additional optical attenuation of the thin clouds. The clear sky precision for this flight campaign case was about 0.72% for a 0.1-s integration, which was close to previously reported flight campaign results. For a vegetated area and lidar path lengths of 8 to 12 km, the precision of the measured differential absorption optical depths to the surface was 1.3 - 2.2% for 0.1-s integration. The precision of the CO2 column measurements to thick clouds with reflectance about 1/10 of that of the surface was about a factor of 2 to 3 lower than that to the surface owing to weaker lidar returns from clouds and a smaller CO2 differential absorption optical depth compared to that for the entire column.

SELECTION OF CITATIONS
SEARCH DETAIL
...