Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(4): e0267268, 2022.
Article in English | MEDLINE | ID: mdl-35442956

ABSTRACT

Transcranial ultrasound stimulation (tUS) shows potential as a noninvasive brain stimulation (NIBS) technique, offering increased spatial precision compared to other NIBS techniques. However, its reported effects on primary motor cortex (M1) are limited. We aimed to better understand tUS effects in human M1 by performing tUS of the hand area of M1 (M1hand) during tonic muscle contraction of the index finger. Stimulation during muscle contraction was chosen because of the transcranial magnetic stimulation-induced phenomenon known as cortical silent period (cSP), in which transcranial magnetic stimulation (TMS) of M1hand involuntarily suppresses voluntary motor activity. Since cSP is widely considered an inhibitory phenomenon, it presents an ideal parallel for tUS, which has often been proposed to preferentially influence inhibitory interneurons. Recording electromyography (EMG) of the first dorsal interosseous (FDI) muscle, we investigated effects on muscle activity both during and after tUS. We found no change in FDI EMG activity concurrent with tUS stimulation. Using single-pulse TMS, we found no difference in M1 excitability before versus after sparsely repetitive tUS exposure. Using acoustic simulations in models made from structural MRI of the participants that matched the experimental setups, we estimated in-brain pressures and generated an estimate of cumulative tUS exposure experienced by M1hand for each subject. We were unable to find any correlation between cumulative M1hand exposure and M1 excitability change. We also present data that suggest a TMS-induced MEP always preceded a near-threshold cSP.


Subject(s)
Motor Cortex , Electric Stimulation , Electromyography , Evoked Potentials, Motor/physiology , Humans , Motor Cortex/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Transcranial Magnetic Stimulation/methods
3.
Biochem Biophys Res Commun ; 445(1): 218-24, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24508265

ABSTRACT

Delivery of optimal amounts of brain-derived neurotrophic factor (BDNF) to regions of the brain affected by neurodegenerative diseases is a daunting task. Using natural products with neuroprotective properties, such as green tea polyphenols, would be a highly useful complementary approach for inexpensive long-term treatment of these diseases. In this study, we used PC12(TrkB) cells which ectopically express TrkB, a high affinity receptor for BDNF. They differentiate and induce neurite outgrowth in response to BDNF. Using this model, we show for the first time that treatment with extremely low concentrations (<0.1 µg/ml) of unfractionated green tea polyphenols (GTPP) and low concentrations (<0.5 µM) of their active ingredient, epigallocatechin-3-gallate (EGCG), potentiated the neuritogenic ability of a low concentration (2 ng/ml) of BDNF. A synergistic interaction was observed between GTPP constituents, where epigallocatechin and epicatechin, both individually lacking this activity, promoted the action of EGCG. GTPP-induced potentiation of BDNF action required the cell-surface associated 67 kDa laminin receptor (67LR) to which EGCG binds with high affinity. A cell-permeable catalase abolished GTPP/EGCG-induced potentiation of BDNF action, suggesting the possible involvement of H2O2 in the potentiation. Consistently, exogenous sublethal concentrations of H2O2, added as a bolus dose (5 µM) or more effectively through a steady-state generation (1 µM), potentiated BDNF action. Collectively, these results suggest that EGCG, dependent on 67 LR and H2O2, potentiates the neuritogenic action of BDNF. Intriguingly, this effect requires only submicromolar concentrations of EGCG. This is significant as extremely low concentrations of polyphenols are believed to reach the brain after drinking green tea.


Subject(s)
Brain-Derived Neurotrophic Factor/pharmacology , Catechin/pharmacology , Neurites/drug effects , Tea/chemistry , Animals , Antioxidants/pharmacology , Catechin/analogs & derivatives , Dose-Response Relationship, Drug , Drug Synergism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Molecular Weight , Neurites/physiology , Oxidants/metabolism , Oxidants/pharmacology , PC12 Cells , Polyphenols/pharmacology , Rats , Receptor, trkB/genetics , Receptor, trkB/metabolism , Receptors, Laminin/chemistry , Receptors, Laminin/metabolism , Receptors, Laminin/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...