Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35160369

ABSTRACT

Degumming is the most important link in the textile industry. The main purpose of degumming is to effectively remove non-cellulose substances in plant bast fibers. In this research, we propose an electro-Fenton (EF) system with a nickel-foam (Ni-F) cathode in weak acid pH (EF/Ni-F) to degum cannabis fiber in EF while reducing the content of pollutants in degumming wastewater. FT-IR, XPS, XRD, SEM, and TG were employed to thoroughly understand the reaction characteristics to characterize chemical components, element qualities, the crystallinity, and the morphologies of degummed fibers. Additionally, physical and mechanical properties such as breaking strength, elongation at breaking, residual glue rate, whiteness, and diameter of degummed fibers were measured. Through testing, it was found that the fiber degummed by the EF method had higher breaking strength, lower residual tackiness, and higher whiteness than other methods. The antibacterial test was used to detect the effect of fiber on Staphylococcus aureus before and after degumming. EF could remove more colloidal components from cannabis than other methods, and the mechanical properties were also enhanced. The characteristics of the degummed fiber further confirmed the effectiveness of the new degumming method. Moreover, the antibacterial experiment found that the antibacterial property of the degummed fiber was enhanced. The colloidal components in the degumming wastewater were flocculated and precipitated. The upper liquid of the solution had low chromaticity, low COD value, and weak acid pH value, which can meet the discharge requirements. The above test proves that EF is an effective degumming method that is environmentally friendly, takes less time, and enhances antibacterial performance.

2.
Chem Commun (Camb) ; 55(33): 4821-4824, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-30946406

ABSTRACT

A practical, simple, and efficient copper-catalyzed atom transfer radical addition reaction of alkenes with α-bromoacetonitrile is realized. With this methodology, various γ-bromonitriles and ß,γ-unsaturated nitriles were efficiently constructed.

SELECTION OF CITATIONS
SEARCH DETAIL
...