Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Neuroscience ; 541: 23-34, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38266908

ABSTRACT

Schizophrenia, a complex psychiatric disorder with diverse symptoms, has been linked to ketamine, known for its N-methyl-D-aspartate (NMDA) receptor antagonistic properties. Understanding the distinct roles and mechanisms of ketamine is crucial, especially regarding its induction of schizophrenia-like symptoms. Recent research highlights the impact of ketamine on key brain regions associated with schizophrenia, specifically the prefrontal cortex (PFC) and hippocampus (Hip). This study focused on these regions to explore proteomic changes related to anxiety and cognitive impairment in a chronic ketamine-induced mouse model of schizophrenia. After twelve consecutive days of ketamine administration, brain tissues from these regions were dissected and analyzed. Using tandem mass tag (TMT) labeling quantitative proteomics techniques, 34,797 and 46,740 peptides were identified in PFC and Hip, corresponding to 5,668 and 6,463 proteins, respectively. In the PFC, a total of 113 proteins showed differential expression, primarily associated with the immuno-inflammatory process, calmodulin, postsynaptic density protein, and mitochondrial function. In the Hip, 129 differentially expressed proteins were screened, mainly related to synaptic plasticity proteins and mitochondrial respiratory chain complex-associated proteins. Additionally, we investigated key proteins within the glutamatergic synapse pathway and observed decreased expression levels of phosphorylated CaMKII and CREB. Overall, the study unveiled a significant proteomic signature in the chronic ketamine-induced schizophrenia mouse model, characterized by anxiety and cognitive impairment in both the PFC and Hip, and this comprehensive proteomic dataset may not only enhance our understanding of the molecular mechanisms underlying ketamine-related mental disorders but also offer valuable insights for future disease treatments.


Subject(s)
Cognitive Dysfunction , Ketamine , Humans , Mice , Animals , Ketamine/toxicity , Proteomics , Prefrontal Cortex/metabolism , Cognitive Dysfunction/metabolism , Anxiety/chemically induced , Hippocampus/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(6): 1093-1097, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36443058

ABSTRACT

Objective: To establish a method for qualitative determination of dichloromethane (DCM) in blood by gas chromatography-mass spectrometry (GC-MS) and quantitative determination of DCM in blood by headspace gas chromatography (HS-GC), and to provide reliable support for forensic examination and analysis of poisoning or deaths caused by DCM. Methods: 0.5 mL blood sample was collected, added into headspace vial with chloroform as the internal standard, and processed by heating at 65 °C and evacuation treatment. The intermediate gas in the headspace vial was analyzed by GC-MS for qualitative validation of the method and by HS-GC for quantitative validation of the method. The method was then applied in forensic case analysis. Results: Qualitative validation of the examination method by GC-MS found that the chromatographic peak and mass spectral characteristic ions were specific in samples added with DCM, and that no interference was observed in the blank negative samples. The limit of detection (LOD) was 5 µg/mL. Quantitative method validation by HS-GC found that the chromatographic peak of DCM was well separated from those of eight other volatile compounds, with the resolution>1.5 in all cases; the lower limit of quantification (LOQ) was 20 µg/mL and good linearity was shown within the range of 20 and 1000 µg/mL, R>0.999; the intra-day test precision and inter-day test precision were good (relative standard deviation, or RSD<15% for both) and test accuracy was high (relative error, or δ<15%). With the method established in the study, DCM was detected successfully in the blood of two fatal cases caused by DCM poisoning, with the blood concentration being 470 µg/mL and 915 µg/mL, respectively. Conclusion: This method is shown to be a rapid, stable and accurate approach to the qualitative and quantitative forensic and toxicological analysis of DCM in blood in DCM poisoning cases or deaths caused by DCM.


Subject(s)
Methylene Chloride , Research Design , Gas Chromatography-Mass Spectrometry , Chloroform
3.
Biochem Biophys Res Commun ; 632: 150-157, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36209583

ABSTRACT

Ketamine is a noncompetitive antagonist of N-methyl-D-aspartate receptors (NMDARs). We have shown that ketamine can induce cognitive impairments and schizophrenia-like symptoms in mice. However, the detailed metabolic profile changes in the progression of ketamine-induced schizophrenia-like symptoms are still not fully elucidated. In this study, an ultra-performance liquid chromatography-Q-Exactive hybrid quadrupole-Orbitrap mass spectrometry-based untargeted hippocampus high-throughput metabolomics method was first performed to screen for potential biomarkers in a schizophrenia-like state in a chronically administered ketamine-induced mouse model. Our results identified that the amino acid and energy metabolism pathways were significantly affected in mouse models of ketamine-induced schizophrenia. The detailed amino acid profiles were subsequently quantified in the hippocampus. The results showed that ketamine dramatically decreased the Lys, Gly, and Ser levels while significantly increasing the Gln level and relative Glu-to-GABA ratio. Our study suggested that Gln, Gly and Ser metabolism disturbances might be involved in ketamine-induced schizophrenia-like phenotypes. This research offers a fresh viewpoint for creating new neuroleptic medications and contributes to understanding the mechanisms underlying ketamine-induced schizophrenia.


Subject(s)
Antipsychotic Agents , Hippocampus , Schizophrenia , Animals , Mice , Amino Acids/metabolism , Biomarkers/metabolism , Disease Models, Animal , gamma-Aminobutyric Acid/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Ketamine/pharmacology , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/chemically induced , Schizophrenia/metabolism , Metabolomics/methods
4.
J Mol Neurosci ; 72(9): 1902-1915, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35802289

ABSTRACT

Ketamine is a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptors. Many experimental studies have shown that ketamine can induce cognitive impairments and schizophrenia-like symptoms. While much data have demonstrated that glial cells are associated with the pathophysiology of psychiatric disorders, including schizophrenia, the response of glial cells to ketamine and its significance to schizophrenia are not clear. The present study was intended to explore whether chronic ketamine treatment would induce behavioral and glial changes in mice. First, ketamine was used to stimulate behavioral abnormalities similar to schizophrenia evaluated by the open field test, elevated plus-maze test, Y maze test, novel object recognition test, and tail suspension test. Secondly, histopathology and Nissl staining were performed. Meanwhile, immunofluorescence was used to evaluate the expression levels of IBA-1 (a microglial marker) and GFAP (an astrocyte marker) in the mouse hippocampus for any change. Then, ELISA was used to analyze proinflammatory cytokine levels for any change. Our results showed that ketamine (25 mg/kg, i.p., qid, 12 days) induced anxiety, recognition deficits, and neuronal injury in the hippocampus. Moreover, chronic ketamine treatment enhanced GFAP expression in CA1 and DG regions of the hippocampus but did not influence the expression of IBA-1. Ketamine also increased the levels of IL-1ß, IL-6, and TNF-α in the mouse hippocampus. Our study created a new procedure for ketamine administration, which successfully induce negative symptoms and cognitive-behavioral defects in schizophrenia by chronic ketamine. This study further revealed that an increase in astrocytosis, but not microglia, is associated with the mouse model of schizophrenia caused by ketamine. In summary, hippocampal astrocytes may be involved in the pathophysiology of ketamine-induced schizophrenia-like phenotypes through reactive transformation and regulation of neuroinflammation.


Subject(s)
Astrocytes , Ketamine , Schizophrenia , Animals , Astrocytes/metabolism , Disease Models, Animal , Hippocampus/metabolism , Humans , Ketamine/toxicity , Mice , Microglia/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/chemically induced , Schizophrenia/metabolism
5.
Neurophotonics ; 8(4): 045002, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34849379

ABSTRACT

Significance: By incorporating multiple overlapping functional near-infrared spectroscopy (fNIRS) measurements, high-density diffuse optical tomography (HD-DOT) images human brain function with fidelity comparable to functional magnetic resonance imaging (fMRI). Previous work has shown that frequency domain high-density diffuse optical tomography (FD-HD-DOT) may further improve image quality over more traditional continuous wave (CW) HD-DOT. Aim: The effects of modulation frequency on image quality as obtainable with FD-HD-DOT is investigated through simulations with a realistic noise model of functional activations in human head models, arising from 11 source modulation frequencies between CW and 1000 MHz. Approach: Simulations were performed using five representative head models with an HD regular grid of 158 light sources and 166 detectors and an empirically derived noise model. Functional reconstructions were quantitatively assessed with multiple image quality metrics including the localization error (LE), success rate, full width at half maximum, and full volume at half maximum (FVHM). All metrics were evaluated against CW-based models. Results: Compared to CW, localization accuracy is improved by >40% throughout brain depths of 13 to 25 mm below the surface with 300 to 500 MHz modulation frequencies. Additionally, the reliable field of view in brain tissue is enlarged by 35% to 48% within an optimal frequency of 300 MHz after considering realistic noise, depending on the dynamic range of the system. Conclusions: These results point to the tremendous opportunities in further development of high bandwidth FD-HD-DOT system hardware for applications in human brain mapping.

6.
Langmuir ; 37(31): 9439-9450, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34314588

ABSTRACT

Metal pipes in industrial production are exposed to various corrosive ions. The combined action of these ions with oxygen in water causes corrosion and contamination of the metal pipes and equipment. In addition, metallic ions in water react with anions to form scale on the surface of the metal, which significantly reduces the service life of the metal and equipment, resulting in safety hazards. Waterborne coatings have attracted tremendous attention due to the less negative impact on the environment, but their practical applications are severely restricted by poor barrier properties and poor mechanical durability. Herein, the barrier properties of water-based coatings are successfully improved by adding functional slow-release nanofillers, and the fillers also endow the coating with excellent antiscaling properties. A functional slow-release nanofiller (lecithin/SiO2/HEDP) was prepared using HEDP (etidronic acid) as the scale inhibitor active material and SiO2 as the carrier, combined with a phospholipid membrane with slow-release permeability. With the addition of slow-release fillers, compared with the EP coating, the impedance modulus of composite coatings increases about 1 order of magnitude, the scale inhibition rate is as high as 80.7%, and the antiscaling life is double that of the coating without the phospholipid-coated filler. Thus, this study is expected to provide a new perspective for the preparation of new slow-release fillers and high-efficiency scale inhibitor coatings.


Subject(s)
Epoxy Resins , Silicon Dioxide , Corrosion , Permeability
7.
Mol Ther ; 29(12): 3465-3483, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34174438

ABSTRACT

Radiation-induced brain injury is a major adverse event in head and neck tumor treatment, influencing the quality of life for the more than 50% of patients who undergo radiation therapy and experience long-term survival. However, no effective treatments are available for these patients, and preventative drugs and effective drug-delivery methods must be developed. Based on our results, miR-122-5p was upregulated in the mouse radiation-induced brain injury (RBI) model and patients with nasopharyngeal carcinoma (NPC) who received radiation therapy. Intranasal administration of a single antagomiR-122-5p dose before irradiation effectively alleviated radiation-induced cognitive impairment, neuronal injury, and neuroinflammation in the mouse RBI model. Results further indicated that miR-122-5p inhibition in microglia reduced the levels of proinflammatory cytokines and enhanced the phagocytic function to protect against radiation-induced neuronal injury in cell models. Further, we profiled transcriptome data and verified that Tensin 1 (TNS1) may be the target of miR-122-5p in RBI. In summary, our results reveal a distinct role for miR-122-5p in regulating neuroinflammation in RBI, indicating that a non-invasive strategy for intranasal miR-122-5p administration may be an attractive therapeutic target in RBI, providing new insights for clinical trials. Further systematic safety assessment, optimization of drug administration, and clarity of mechanism will accelerate the process into clinical practice.


Subject(s)
Brain Injuries , MicroRNAs , Nasopharyngeal Neoplasms , Animals , Antagomirs , Humans , Mice , MicroRNAs/genetics , Nasopharyngeal Neoplasms/radiotherapy , Quality of Life
8.
Theranostics ; 11(9): 4103-4121, 2021.
Article in English | MEDLINE | ID: mdl-33754051

ABSTRACT

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and currently has no effective treatment. Mainstream research on the mechanisms and therapeutic targets of AD is focused on the two most important hallmarks, Aß and Tau, but the results from clinical studies are not encouraging. Abnormal microglial polarization is a clear typical pathological feature in the progression of AD. Microglia can be neuroprotective by degrading and removing Aß and Tau. However, under AD conditions, microglia transform into a pro-inflammatory phenotype that decreases the phagocytic activity of microglia, damages neurons and promotes the pathology of AD. We previously reported that a miR-146a polymorphism is associated with sporadic AD risk, and the nasal administration of miR-146a mimics reduced cognitive impairment and the main pathological features of AD. However, it is not clear by what mechanism miR-146a resists the pathological process of AD. In this study, we discovered that microglia-specific miR-146a overexpression reduced cognitive deficits in learning and memory, attenuated neuroinflammation, reduced Aß levels, ameliorated plaque-associated neuritic pathology, and prevented neuronal loss in APP/PS1 transgenic mice. In addition, we found that miR-146a switched the microglial phenotype, reduced pro-inflammatory cytokines and enhanced phagocytic function to protect neurons in vitro and in vivo. Moreover, transcriptional analysis confirmed that miR-146a opposed the pathological process of AD mainly through neuroinflammation-related pathways. In summary, our results provide sufficient evidence for the mechanism by which miR-146a opposes AD and strengthen the conclusion that miR-146a is a promising target for AD and other microglia-related diseases.


Subject(s)
Alzheimer Disease/genetics , Cognition/physiology , Cognitive Dysfunction/genetics , MicroRNAs/genetics , Microglia/pathology , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Cells, Cultured , Cognitive Dysfunction/parasitology , Cytokines/genetics , Disease Models, Animal , HEK293 Cells , Humans , Learning/physiology , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/pathology , Phenotype , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology
9.
Radiat Res ; 195(4): 355-365, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33544844

ABSTRACT

Radiation-induced brain injury (RBI) is a serious complication in patients who have received radiotherapy for head and neck tumors. Currently, there is a scarcity of information on early diagnostic and preventive methods of RBI. Accumulating evidence suggests that microRNAs are involved in the regulation of radiation injury, but the molecular biological mechanism of miRNAs in RBI is largely unknown. Therefore, in our study, microRNA sequencing was used to discover differential miRNAs in the hippocampus of RBI-modeled mice, which suggested that miR-741-3p was most significantly upregulated. To clarify the underlying mechanism of miR-741-3p in RBI-modeled mice, an inhibitor of miR-741-3p (antagomiR-741) was delivered into the brain via the nasal passage before irradiation. The delivery of antagomiR-741 significantly reduced miR-741-3p levels in the hippocampus of RBI-modeled mice, and the cognitive dysfunction and neuronal apoptosis induced by radiation were also alleviated at 6 weeks postirradiation. Downregulation of miR-741-3p was found to improve the protrusion and branching status of microglia after irradiation and reduced the number of GFAP-positive astrocytes. Additionally, antagomiR-741 suppressed the radiation-induced production of pro-inflammatory cytokines IL-6 and TNF-α in the hippocampus and S100B in the serum. Furthermore, Ddr2, PKCα and St8sia1 were revealed as target genes of miR-741-3p and as potential regulatory targets for RBI. Overall, our study provides identification and functional evaluation of miRNA in RBI and lays the foundation for improving the prevention strategy for RBI based on the delivery of miRNA via the nose-brain pathway.


Subject(s)
Antagomirs/pharmacology , Brain Injuries/drug therapy , Head and Neck Neoplasms/radiotherapy , MicroRNAs/pharmacology , Radiation Injuries/drug therapy , Animals , Apoptosis/drug effects , Brain/drug effects , Brain/pathology , Brain/radiation effects , Brain Injuries/etiology , Brain Injuries/genetics , Brain Injuries/pathology , Disease Models, Animal , Head and Neck Neoplasms/complications , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Hippocampus/drug effects , Hippocampus/pathology , Humans , Inflammation/drug therapy , Inflammation/genetics , Inflammation/pathology , Mice , MicroRNAs/genetics , Radiation Injuries/genetics , Radiation Injuries/pathology , Signal Transduction/drug effects
10.
Sci Rep ; 10(1): 15735, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978453

ABSTRACT

Growing evidence indicated that single nucleotide polymorphisms (SNPs) in the apolipoprotein E (APOE) gene are related to increase the risk of many inflammatory-related diseases. However, few genetic studies have associated the APOE gene polymorphism with sepsis. This study was to investigate the clinical relevance of the APOE gene polymorphism in the onset and progression of sepsis. A multicenter case-control association study with a large sample size (601 septic patients and 699 healthy individuals) was conducted. Clinical data showed that the APOEε4 allele was overrepresented among all patients with septic shock (p = 0.031) compared with sepsis subtype, suggesting that APOEε4 allele may associated with increased susceptibility to the progression of sepsis. Moreover, the APOE mRNA levels decreased after lipopolysaccharide (LPS) stimulation in cells in culture. Then 21 healthy individuals to extract PBMC for genotype grouping (APOE4+ group 8; APOE4- group 13) was selected to evaluate the effect on APOE level, and results showed that the expression level of APOE in APOE4+ group and APOE4- group did not differ in mRNA levels after an LPS challenge, but the protein levels in APOE4+ group decreased slower than that in APOE4- group, and this process was accompanied by the upregulation of proinflammatory cytokines. These results provide evidence that the APOEε4 allele might be associated with the development of sepsis and a potential risk factor that can be used in the prognosis of sepsis.


Subject(s)
Apolipoproteins E/genetics , Down-Regulation , Polymorphism, Single Nucleotide , Sepsis/genetics , Alleles , Animals , Case-Control Studies , China , Disease Progression , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Lipopolysaccharides/adverse effects , Male , Mice , Middle Aged , RAW 264.7 Cells , Shock, Septic/genetics , Survival Analysis
11.
J Colloid Interface Sci ; 580: 146-159, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32683113

ABSTRACT

CeO2 was used as the only oxidant for aniline polymerization, and polyaniline (PANI) was grown on CeO2 surface to form CeO2@PANI nanocomposites. SEM and TEM showed that the CeO2@PANI composites were nanorods in a core-shell structure. XPS indicated that CeO2-core was reduced by aniline into Ce3+, which was then captured by the PANI-shell. Then the passive ability of CeO2@PANI coating on steels was explored. EIS showed that the impedance modulus of the CeO2@PANI coating exceeded 108 Ω·cm2 after accelerated immersion. The SVET and XPS confirmed that PANI polarized the anodic reaction, Ce3+ suppressed the cathodic reaction, and PO43- formed complex precipitation. Some high-valent metal oxides can directly oxidize the aniline polymerization to form MO@PANI hybrid particles. The cations obtained by the metal oxide reduction can be captured by PANI and participate in passivation together with dopants. This study provides a new kind of nanocomposite fillers that can effectively passivate steel substrates within epoxy coatings for long-time protection.

12.
Front Neurol ; 11: 596, 2020.
Article in English | MEDLINE | ID: mdl-32714268

ABSTRACT

Background: Migraine is an intractable headache disorder, manifesting as periodic attacks. It is highly burdensome for patients and society. Acupuncture treatment can be beneficial as a supplementary and preventive therapy for migraine. Objectives: This systematic review and meta-analysis aimed to investigate the efficacy and safety of acupuncture for migraine, and to examine transcranial doppler changes after acupuncture. Methods: Reports, conference, and academic papers published before March 15, 2019 in databases including PubMed, Cochrane library, Embase, China National Knowledge Infrastructure, WANFANG Database, Chinese journal of Science and Technology, and China Biomedical were searched. Randomized controlled trials (RCTs) involving acupuncture, sham acupuncture, and medication in migraine were included. The Cochrane Collaboration software, RevMan 5.3, was used for data processing and migration risk analysis. Results: Twenty-eight RCTs were included. 15 RCTs included medication only, 10 RCTs included sham acupuncture only, and 3 RCTs included both. The study included 2874 patients, split into 3 groups: acupuncture treatment group (n = 1396), medication control group (n = 865), and sham acupuncture control group (n = 613). The results showed that treatment was more effective in the acupuncture group than in the sham acupuncture group (MD = 1.88, 95% CI [1.61, 2.20], P < 0.00001) and medication group (MD = 1.16, 95% CI [1.12, 1.21], P < 0.00001). Improvement in visual analog scale (VAS) score was greater in the acupuncture group than in the sham acupuncture group (MD = -1.00, 95% CI [-1.27,-0.46], P < 0.00001; MD = -0.59, 95% CI [-0.81,-0.38], P < 0.00001), and their adverse reaction rate was lower than that of the medication group (RR = 0.16, 95% CI [0.05, 0.52], P = 0.002). The improvement of intracranial blood flow velocity by acupuncture is better than that by medication, but the heterogeneity makes the result unreliable. Conclusions: Acupuncture reduced the frequency of migraine attacks, lowered VAS scores, and increased therapeutic efficiency compared with sham acupuncture. Compared with medication, acupuncture showed higher effectiveness with less adverse reactions and improved intracranial blood circulation. However, owing to inter-study heterogeneity, a prospective, multicenter RCT with a large sample is required to verify these results.

13.
Front Mol Neurosci ; 13: 90, 2020.
Article in English | MEDLINE | ID: mdl-32581706

ABSTRACT

Progressive functional deterioration and loss of neurons underlies neurological diseases and constitutes an important cause of disability and death worldwide. The causes of various types of neurological diseases often share several critical nerve-related cellular mechanisms and pathological features, particularly the neuroinflammatory response in the nervous system. A rapidly growing body of evidence indicates that various microRNAs play pivotal roles in these processes in neurological diseases and might be viable therapeutic targets. Among these microRNAs, microRNA-146a (miR-146a) stands out due to the rapid increase in recent literature on its mechanistic involvement in neurological diseases. In this review, we summarize and highlight the critical role of miR-146a in neurological diseases. MiR-146a polymorphisms are associated with the risk of neurological disease. Alterations in miR-146a expression levels are crucial events in the pathogenesis of numerous neurological diseases that are spatially and temporally diverse. Additionally, the target genes of miR-146a are involved in the regulation of pathophysiological processes in neurological diseases, particularly the neuroinflammatory response. In summary, miR-146a mainly plays a critical role in neuroinflammation during the progression of neurological diseases and might be a prospective biomarker and therapeutic target. Understanding the mechanisms by which miR-146a affects the neuroinflammatory response in different neurological injuries, different cell types, and even different stages of certain neurological diseases will pave the way for its use as a therapeutic target in neurodegenerative diseases.

14.
Mol Ther Nucleic Acids ; 18: 681-695, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31707205

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia and cannot be cured. The etiology and pathogenesis of AD is still not fully understood, the genetics is considered to be one of the most important factors for AD onset, and the identified susceptible genes could provide clues to the AD mechanism and also be the potential targets. MicroRNA-146a-5p (miR-146a) is well known in the regulation of the inflammatory response, and the functional SNP of miR-146a was associated with AD risk. In this study, using a noninvasive nasal administration, we discovered that a miR-146a agomir (M146AG) rescued cognitive impairment in the APP/PS1 transgenic mouse and alleviated the overall pathological process in the AD mouse model, including neuroinflammation, glia activation, Aß deposit, and tau phosphorylation in hippocampi. Furthermore, the transcriptional analysis revealed that besides the effect of neuroinflammation, M146AG may serve as a multi-potency target for intervention in AD. In addition, Srsf6 was identified as a target of miR-146a, which may play a role in AD progression. In conclusion, our study supports that the nasal-to-brain pathway is efficient and operable for the brain administration of microRNAs (miRNAs), and that miR-146a may be a new potential target for AD treatment.

15.
mBio ; 10(4)2019 08 06.
Article in English | MEDLINE | ID: mdl-31387910

ABSTRACT

Increasing evidence has indicated that single nucleotide polymorphisms (SNPs) are related to the susceptibility of sepsis and might provide potential evidence for the mechanisms of sepsis. Our recent preliminary study showed that the ADAM10 genetic polymorphism was clinically associated with the development of sepsis, and little is known about the underlying mechanism. The aim of this study was to confirm the association between the ADAM10 promoter rs653765 G→A polymorphism and the progression of sepsis and to discover the underlying mechanism. Clinical data showed that the rs653765 G→A polymorphism was positively correlated with the development of sepsis, as evidenced by a multiple-center case-control association study with a large sample size, and showed that EGR1 and ADAM10 levels were associated well with the different subtypes of sepsis patients. In vitro results demonstrated that the rs653765 G→A variants could functionally modulate ADAM10 promoter activity by altering the binding of the EGR1 transcription factor (TF) to the ADAM10 promoter, affecting the transcription and translation of the ADAM10 gene. Electrophoretic mobility shift assay (EMSA) followed by chromatin immunoprecipitation (ChIP) assay indicated the direct interaction. Functional studies further identified that the EGR1/ADAM10 pathway is important for the inflammatory response. EGR1 intervention in vivo decreased host proinflammatory cytokine secretion and rescued the survival and tissue injury of the mouse endotoxemia model.IMPORTANCE Sepsis is characterized as life-threatening organ dysfunction, with unacceptably high mortality. Evidence has indicated that functional SNPs within inflammatory genes are associated with susceptibility, progression, and prognosis of sepsis. These mechanisms on which these susceptible sites depended often suggest the key pathogenesis and potential targets in sepsis. In the present study, we confirmed that a functional variant acts as an important genetic factor that confers the progression of sepsis in a large sample size and in multiple centers and revealed that the variants modulate the EGR1/ADAM10 pathway and influence the severity of sepsis. We believe that we provide an important insight into this new pathway involving the regulation of inflammatory process of sepsis based on the clinical genetic evidence, which will enhance the understanding of nosogenesis of sepsis and provide the potential target for inflammation-related diseases.


Subject(s)
ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Early Growth Response Protein 1/metabolism , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , Sepsis/genetics , ADAM10 Protein/metabolism , Aged , Amyloid Precursor Protein Secretases/metabolism , Animals , Case-Control Studies , China , Disease Progression , Early Growth Response Protein 1/genetics , Female , Humans , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Middle Aged , Point Mutation , Promoter Regions, Genetic , Protein Binding , Sepsis/metabolism
16.
Biomed Res Int ; 2019: 1498034, 2019.
Article in English | MEDLINE | ID: mdl-31214610

ABSTRACT

Accumulating evidence reveals that the sirtuin family is involved in the pathology of Parkinson's disease (PD). However, the association between the polymorphisms of the sirtuin gene and the risk of PD remains elusive. Here, we investigated the possible association of nine SIRT1 and SIRT2 SNPs with the risk of PD through a clinical case-control study from the Chinese Han population. Our results showed that rs12778366 in the promoter region of SIRT1 and rs2015 in the 3'untranslated region (3'UTR) of the SIRT2 were significantly associated with the risk of PD. Five SNPs related to SIRT1, rs3740051, rs7895833, rs7069102, rs2273773, and rs4746720 and two SNPs related to SIRT2, rs10410544, and rs45592833 did not show an association with PD risk in this study. Moreover, we found that mRNA level of SIRT2 was upregulated, and mRNA level of SIRT1 was downregulated in the peripheral blood of PD patients compared with healthy controls, and we also observed that SNPs rs12778366 and rs2015 influenced the SIRT1 and SIRT2 expression levels, respectively. Further functional assays suggest that rs2015 may affect the expression of SIRT2 by affecting the binding of miR-8061 to the 3'UTR of SIRT2, ultimately contributing to the risk of PD.


Subject(s)
3' Untranslated Regions , Gene Expression Regulation, Enzymologic , Parkinson Disease , Polymorphism, Single Nucleotide , Sirtuin 2/genetics , Up-Regulation , Aged , Asian People/ethnology , China/ethnology , Female , Humans , Male , Middle Aged , Parkinson Disease/enzymology , Parkinson Disease/ethnology , Parkinson Disease/genetics , Risk Factors , Sirtuin 1/genetics , Sirtuin 2/biosynthesis
17.
J Cell Physiol ; 234(7): 10411-10420, 2019 07.
Article in English | MEDLINE | ID: mdl-30511419

ABSTRACT

G protein-coupled receptor kinase 5 (GRK5) is a serine/threonine kinase whose dysfunction results in cognitive impairment and Alzheimer-like pathology, including tau hyperphosphorylation. However, the mechanisms whereby GRK5 influences tau phosphorylation remain incompletely understood. In the current study, we showed that GRK5 influenced the phosphorylation of tau via glycogen synthase kinase 3ß (GSK3ß). The activity of both tau and GSK3ß in the hippocampus was increased in aged GRK5-knockout mice, which is consistent with what occurs in APP/PS1 transgenic mice. Furthermore, GRK5 regulated the activity of GSK3ß and phosphorylated tau in vitro. Regardless of changes of GRK5 protein levels, tau hyperphosphorylation remained reduced after GSK3ß activity was inhibited, suggesting that GRK5 may specifically influence tau hyperphosphorylation by modulating GSK3ß activity. Taken together, our findings suggest that GRK5 deficiency contributes to the pathogenesis of Alzheimer's disease by influencing the hyperphosphorylation of tau through the activation of GSK3ß.


Subject(s)
Alzheimer Disease/metabolism , G-Protein-Coupled Receptor Kinase 5/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Phosphorylation/physiology , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cognitive Dysfunction/metabolism , HEK293 Cells , Hippocampus/metabolism , Humans , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Signal Transduction/physiology
18.
Cell Physiol Biochem ; 51(6): 2732-2745, 2018.
Article in English | MEDLINE | ID: mdl-30562735

ABSTRACT

BACKGROUND/AIMS: Increasing evidence suggests the important role of sirtuin 2 (SIRT2) in the pathology of Parkinson's disease (PD). However, the association between potential functional polymorphisms in the SIRT2 gene and PD still needs to be identified. Exploring the molecular mechanism underlying this potential association could also provide novel insights into the pathogenesis of this disorder. METHODS: Bioinformatics analysis and screening were first performed to find potential microRNAs (miRNAs) that could target the SIRT2 gene, and molecular biology experiments were carried out to further identify the regulation between miRNA and SIRT2 and characterize the pivotal role of miRNA in PD models. Moreover, a clinical case-control study was performed with 304 PD patients and 312 healthy controls from the Chinese Han population to identify the possible association of single nucleotide polymorphisms (SNPs) within the miRNA binding sites of SIRT2 with the risk of PD. RESULTS: Here, we demonstrate that miR-486-3p binds to the 3' UTR of SIRT2 and influences the translation of SIRT2. MiR-486-3p mimics can decrease the level of SIRT2 and reduce a-synuclein (α-syn)-induced aggregation and toxicity, which may contribute to the progression of PD. Interestingly, we find that a SNP, rs2241703, may disrupt miR-486-3p binding sites in the 3' UTR of SIRT2, subsequently influencing the translation of SIRT2. Through the clinical case-control study, we further verify that rs2241703 is associated with PD risk in the Chinese Han population. CONCLUSION: The present study confirms that the rs2241703 polymorphism in the SIRT2 gene is associated with PD in the Chinese Han population, provides the potential mechanism of the susceptibility locus in determining PD risk and reveals a potential target of miRNA for the treatment and prevention of PD.


Subject(s)
MicroRNAs/genetics , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Sirtuin 2/genetics , alpha-Synuclein/metabolism , 3' Untranslated Regions , Aged , Asian People/genetics , Case-Control Studies , Cell Line , Female , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Male , MicroRNAs/metabolism , Middle Aged , Parkinson Disease/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Biosynthesis , Sirtuin 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...