Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36371964

ABSTRACT

The rhizome of Dioscorea nipponica Makino (RDN) is a widely used herbal medicine, which has significant anti-inflammatory activities on various inflammatory diseases. However, the bioactive compositions responsible for the anti-inflammatory activity of RDN are still unknown. This study aimed to identify the anti-inflammatory bioactive compounds in RDN using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q/TOF-MS), quantitative analysis of multiple components by single marker (QAMS) and chemometric methods. Firstly, an HPLC-Q/TOF-MS method was employed for identification of bioactive steroidal saponins in RND, and a total of twelve steroid saponins were identified. Then, QAMS method was employed to determine the contents of seven bioactive steroidal saponins, including protodioscin, protogracillin, methyl protodioscin, pseudoprotodioscin, pseudoprogracillin, dioscin and gracillin in RND samples using dioscin as the reference analyte. The anti-inflammatory effects of RDN samples were then evaluated by inhibition of NO production in LPS-induced RAW264.7 cells. Furthermore, chemometric methods, including Pearson correlation analysis and partial least squares regression (PLSR) were employed to investigate the correlations between chemical components and anti-inflammatory activities, and explore the potential anti-inflammatory bioactive compounds of RDN. The results indicated that protodioscin, dioscin and gracillin were selected as the major anti-inflammatory compounds in RND. The further verification experiments showed that protodioscin, dioscin and gracillin exhibited great inhibition on NO production with IC50 values (the half maximal inhibitory concentration) of 0.712 µM, 0.469 µM and 0.815 µM, respectively. They also significantly reduced the levels of TNF-α, IL-1ß, and IL-6 in LPS-induced RAW264.7 cells. The present study provided evidences for the anti-inflammatory activity of RND and identification of the anti-inflammatory components in RDN.


Subject(s)
Dioscorea , Saponins , Dioscorea/chemistry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry , Lipopolysaccharides , Chemometrics , Saponins/analysis , Anti-Inflammatory Agents/pharmacology
2.
J Pharm Biomed Anal ; 220: 114982, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-35944337

ABSTRACT

Artemisia argyi leaves (AAL) has been widely used as herbal medicine and food supplement and in China and other Asian countries. The aim of this work is to qualitative and quantitative characterization of phenolic compounds in AAL and screening of natural product inhibitors of α-glucosidase from AAL. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was employed to rapid and comprehensive identification of phenolic compounds in AAL, and a total of thirty-three phenolic compounds were identified. High performance liquid chromatography with diode array detection (HPLC-DAD) was established and validated to simultaneously determinate ten main bioactive phenolics compounds in different batches of AAL samples. Meanwhile, the inhibitory capacities of different batches of AAL samples on α-glucosidase were evaluated. Then, relevance analysis, including grey relational analysis and Pearson correlation analysis were employed to investigate the correlations between the contents of phenolic compounds and α-glucosidase inhibitory activities, and discover the α-glucosidase inhibitors in AAL. The relevance analysis results indicated that three phenolic compounds, 3-caffeoylquinic acid, 3,4-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid could be potential α-glucosidase inhibitors in AAL. Moreover, the α-glucosidase inhibitory activities of the three phenolic compounds were validated by in vitro and in vivo experiments. The possible inhibiting effect of the three phenolic compounds on α-glucosidase was also explored by molecular docking analysis, and the results indicated that the binding of the three α-glucosidase inhibitors to α-glucosidase mainly by hydrogen bonds, hydrophobic forces and ionic bonds. The present research provided a deep insight into phenolic compounds and α-glucosidase inhibitory activities of AAL, and discovered the α-glucosidase inhibitors in AAL.


Subject(s)
Artemisia , Glycoside Hydrolase Inhibitors , Artemisia/chemistry , Chlorogenic Acid/analysis , Chromatography, High Pressure Liquid , Chromatography, Liquid , Glycoside Hydrolase Inhibitors/chemistry , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Leaves/chemistry , Tandem Mass Spectrometry , alpha-Glucosidases
SELECTION OF CITATIONS
SEARCH DETAIL
...