Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Heliyon ; 10(10): e31603, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38831840

ABSTRACT

In social commerce, users are increasingly resorting to social media platforms to search for information, purchase goods, and share shopping experiences. However, social media use may also affect users' emotions negatively, causing them to switch platforms. Therefore, this study aims to investigate how negative factors (i.e., information and communication overload) affect consumers' platform-switching behavior in social commerce. Drawing on the stimulus-organism-response (SOR) model, this study established a research framework and conducted an online survey in China. A purposive sampling technique was used to collect the data, generating 477 valid responses. Data analysis, based on structural equation modeling, indicates that information and communication overload, and online fatigue positively affect platform-switching intention. The effect of the intention to switch on behavior is moderated by switching costs. Mediation analysis shows that information and communication overload can indirectly influence switching behavior through online fatigue and switching intention. This study incorporates the novel aspects of switching costs in examining the driving forces behind platform-switching in social commerce, thereby theoretically adding value to the existing body of knowledge. Apart from this, our findings also bear significant practical implications and are valuable for social commerce platforms and sellers to improve their user experience and retain existing customers.

2.
J Ethnopharmacol ; 331: 118333, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38750986

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Various components of Lonicera japonica Thunb. (LJT) exhibit pharmacological activities, including anti-inflammatory and antioxidant effects. Nevertheless, the relationship between LJT and ferroptosis remains largely unexplored. AIM OF THE STUDY: The purpose of this research was to look into the role of LJT in regulating LPS-induced ferroptosis in ALI and to compare the effects of different parts of LJT. MATERIALS AND METHODS: We established a mice ALI model by treating with LPS. Administered mice with different doses of Lonicerae Japonicae Flos (LJF), Lonicera Japonica Leaves (LJL) and Lonicerae Caulis (LRC) extracts, respectively. The levels of IL-6, IL-1ß, TNF-α, IL-4, IL-10, and PGE2 in bronchoalveolar lavage fluid (BALF) were measured using enzyme-linked immunosorbent assay. Furthermore, the concentrations of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), and total ferrous ions (Fe2+) in lung tissues were evaluated. Hematoxylin and eosin staining was conducted to examine the morphological structure of lung tissues. Transmission electron microscopy was used to investigate the ultrastructural morphology of mitochondria. Furthermore, the effects of LJT were evaluated via immunohistochemical staining, western blotting, and quantitative real-time polymerase chain reaction analyses. Finally, employing molecular docking and molecular dynamics research techniques, we aimed to identify crucial components in LJT that might inhibit ferroptosis by targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4). RESULTS: We observed that pretreatment with LJT significantly mitigated LPS-induced lung injury and suppressed ferroptosis. This was supported by reduced accumulation of pro-inflammatory cytokines, ROS, MDA, and Fe2+, along with increased levels of anti-inflammatory cytokines, SOD, GSH, Nrf2, and GPX4 in the lung tissues of ALI mice. Luteolin-7-O-rutinoside, apigenin-7-O-rutinoside, and amentoflavone in LJT exhibit excellent docking effects with key targets of ferroptosis, Nrf2 and GPX4. CONCLUSIONS: Pretreatment with LJT may alleviate LPS-induced ALI, possibly by suppressing ferroptosis. Our initial results indicate that LJT activates the Nrf2/GPX4 axis, providing protection against ferroptosis in ALI. This finding offers a promising therapeutic candidate for ALI treatment.


Subject(s)
Acute Lung Injury , Ferroptosis , Lipopolysaccharides , Lonicera , Oxidative Stress , Plant Extracts , Animals , Lonicera/chemistry , Lipopolysaccharides/toxicity , Ferroptosis/drug effects , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Mice , Male , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Plant Leaves/chemistry , Cytokines/metabolism , NF-E2-Related Factor 2/metabolism , Lung/drug effects , Lung/pathology , Lung/metabolism , Antioxidants/pharmacology , Disease Models, Animal , Reactive Oxygen Species/metabolism
3.
Ren Fail ; 46(1): 2300730, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38343320

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) is a major complication in peritoneal dialysis (PD) patients. Previous studies have demonstrated that platelet distribution width (PDW) is associated with cardiovascular events in hemodialysis (HD) patients. In this study, we hypothesized that elevated PDW can predict all-cause and cardiovascular mortality in PD patients. METHODS: We recruited PD patients for a single-center retrospective cohort study from 1 January 2007, to 30 June 2020. Receiver-operating characteristic (ROC) curves were made to determine the PDW cutoff value for predicting all-cause mortality. The propensity score matching (PSM) method was used to improve the equilibrium between groups. The relation of PDW with all-cause and cardiovascular mortality was analyzed by Cox proportional hazards models. Restricted cubic spline (RCS) models were used to determine whether there was a linear relationship between PDW and all-cause and cardiovascular mortality. RESULTS: A total of 720 PD patients were screened, and 426 PD patients were enrolled after PSM. After adjusting for confounders, Cox proportional hazards models showed that the PDW value was positively correlated with the risk of all-cause and cardiovascular mortality (HR = 1.162, 95% CI 1.057-1.278, p = 0.002 and HR = 1.200, 95% CI 1.041-1.382, p = 0.012). The adjusted RCS analysis further showed that the relationship of PDW with all-cause and cardiovascular mortality was linear (p for nonlinearly = 0.143 and 0.062). CONCLUSION: Elevated PDW is independently associated with all-cause and cardiovascular mortality in PD patients.


Subject(s)
Cardiovascular Diseases , Peritoneal Dialysis , Humans , Retrospective Studies , Peritoneal Dialysis/adverse effects , Peritoneal Dialysis/methods , Cardiovascular Diseases/etiology , Renal Dialysis , Proportional Hazards Models
4.
ACS Appl Mater Interfaces ; 16(4): 4999-5008, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38241705

ABSTRACT

Two-dimensional (2D) Ti3C2Tx MXene materials show great potential in electrochemical and flexible sensors due to their high electrical conductivity, good chemical stability, and special delaminated structure. However, their thermal properties were rarely studied, which remarkably affect the stability and safety of various devices. Here, we fabricated a suspended MXene drum resonator photothermally driven by a sinusoidally modulated laser, measured the thermal time constant by demodulating the thermomechanical motion, and then calculated the thermal conductivity and thermal diffusivity of the MXene film. Experiments show the thermal conductivity of the film increases from 3.10 to 3.58 W/m·K while the thermal diffusivity from 1.06 × 10-6 to 1.22 × 10-6 m2/s when temperature increases from 300 to 360 K. We also confirm the film thermal conductivity is mainly contributed by phonon transport rather than electron transport. Furthermore, the relationship between the mechanical and thermal properties of the MXene films was disclosed. The thermal conductivity decreases when film strain increases, caused by enhanced phonon scattering and softening of high-frequency phonons. The measurements provide a noninvasive method to analyze the thermal characteristics of suspended MXene films, which can be further extended to the thermal properties of other 2D materials.

5.
Clin Exp Immunol ; 214(1): 26-35, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37458218

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disorder that can give rise to joint swelling and inflammation, potentially affecting the entire body, closely linked to the state of T cells. The T-cell activation Rho GTPase activating protein (TAGAP) is associated with many autoimmune diseases including RA and is directly linked to the differentiation of Th17 cells. The present study intends to investigate the influence of TAGAP on the RA progression and its mechanism to empower new treatments for RA. A collagen-induced-arthritis (CIA) rat model was constructed, as well as the extraction of CD4+ T cells. RT-qPCR, H&E staining and safranin O/fast green staining revealed that TAGAP interference reduced TAGAP production in the ankle joint of CIA rats, and joint inflammation and swelling were alleviated, which reveals that TAGAP interference reduces synovial inflammation and cartilage erosion in the rat ankle joint. Expression of inflammatory factors (TNF-α, IL-1ß, and IL-17) revealed that TAGAP interference suppressed the inflammatory response. Expression of pro-inflammatory cytokines, matrix-degrading enzymes, and anti-inflammatory cytokines at the mRNA level was detected by RT-qPCR and revealed that TAGAP interference contributed to the remission of RA. Mechanistically, TAGAP interference caused a significant decrease in the levels of RhoA and NLRP3. Assessment of Th17/Treg levels by flow cytometry revealed that TAGAP promotes Th17 cells differentiation and inhibits Treg cells differentiation in vitro and in vivo. In conclusion, TAGAP interference may decrease the differentiation of Th17 cells by suppressing the expression of RhoA and NLRP3 to slow down the RA progression.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Th17 Cells , Inflammation , Cytokines/metabolism , Cell Differentiation
6.
ACS Appl Mater Interfaces ; 15(23): 28806-28816, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37254512

ABSTRACT

Highly sensitive, multifunctional, and comfortable fabric sensors with splendid electrical properties for precise detection of human physiological health parameters have attractive prospects in next-generation wearable flexible devices. However, it remains a non-ignorable challenge to construct a multifunctional fabric sensor to meet the requirements of compact structure, high sensitivity, fast response, excellent stability, and air permeability. Here, a wool felt@MXene fabric sensor (WF@MFS) prepared by felting large quantities of wool coated with MXene is reported for measuring multiple physiological parameters in a noninvasive manner. With the high conductivity and outstanding mechanical properties of MXene and the special scale-like surface structure of the wool fiber, the sensor exhibits remarkable sensing performance such as high pressure sensitivity (80.79 kPa-1), fast response (40 ms), low detection limit (12 Pa), and strong stability (>12,500 cycles). Furthermore, to avoid direct contact between MXene and the human body, the WF@MFS is encapsulated in pure wool without MXene, thereby enabling the fabricated sensor to be tightly integrated into a variety of clothing for monitoring different physiological signals and information about human activities. More importantly, we develop an intelligent cushion with a square and panda pattern and an intelligent neckerchief in the form of arrays based on the WF@MFS, which can intuitively observe the real-time force distribution of the thigh and cervical spine by means of machine learning when a human body sits in different postures. The sensor proposed in this work demonstrates the great ability to prevent cardiovascular disease and the related diseases caused by improper sitting postures in advance, paving a promising path for future wearable smart fabric electronics.


Subject(s)
Wearable Electronic Devices , Wool Fiber , Humans , Textiles , Mechanical Phenomena
7.
Clin Interv Aging ; 18: 629-638, 2023.
Article in English | MEDLINE | ID: mdl-37096218

ABSTRACT

Background: Impaired left ventricular (LV) relaxation is indicative of grade I diastolic dysfunction, which is mainly assessed by late diastolic transmitral flow velocity (E/A ratio). Although the E/A ratio has important diagnostic and prognostic implications with cardiac outcomes, the causal link between abnormal E/A ratio and left ventricle remodeling (LV remodeling) remains unclear. Methods: A longitudinal analysis of 869 eligible women aged ≥45 years, who had received echocardiography scans as well as 5-year follow-up assessments between 2015 and 2020. Women with pre-existing cardiac abnormalities including grade II/III diastolic dysfunction as diagnosed by echocardiography, or structural heart disease were excluded. E/A abnormality was defined as baseline E/A ratio <0.8. The classification of LV remodeling was based on the measurements of left ventricular mass index (LVMI) and relative wall thickness (RWT). Logistic and linear regression models were used. Results: Among the 869 women (60.71±10.01 years), 164 (18.9%) had developed LV remodeling after the 5-year follow-up. The proportion of women with E/A abnormality versus non-abnormality was also significantly different (27.13% vs 16.59%, P=0.007). Multivariable-adjusted regression models showed that E/A abnormality (OR: 4.14, 95%Cl:1.80-9.20, P=0.009) was significantly associated with higher risk of concentric hypertrophy (CH) after follow-up. No such association was found in either concentric remodeling (CR) or eccentric hypertrophy (EH). Higher baseline E/A ratio was correlated with lower ΔRWT during the 5-year follow-up (ß=-0.006 m/s, 95% CI: -0.012 to -0.002, P=0.025), which was independent of demographics and biological factors. Conclusion: E/A abnormality is associated with a higher risk of CH. Higher baseline E/A ratio may be associated with decreased relative changes in RWT.


Subject(s)
Hypertrophy, Left Ventricular , Ventricular Remodeling , Aged , Humans , Female , Middle Aged , Longitudinal Studies , Echocardiography , Prognosis
8.
Nat Commun ; 14(1): 1224, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36869044

ABSTRACT

Base editors, including dual base editors, are innovative techniques for efficient base conversions in genomic DNA. However, the low efficiency of A-to-G base conversion at positions proximal to the protospacer adjacent motif (PAM) and the A/C simultaneous conversion of the dual base editor hinder their broad applications. In this study, through fusion of ABE8e with Rad51 DNA-binding domain, we generate a hyperactive ABE (hyABE) which offers improved A-to-G editing efficiency at the region (A10-A15) proximal to the PAM, with 1.2- to 7-fold improvement compared to ABE8e. Similarly, we develop optimized dual base editors (eA&C-BEmax and hyA&C-BEmax) with markedly improved simultaneous A/C conversion efficiency (1.2-fold and 1.5-fold improvement, respectively) compared to A&C-BEmax in human cells. Moreover, these optimized base editors catalyze efficiently nucleotide conversions in zebrafish embryos to mirror human syndrome or in human cells to potentially treat genetic diseases, indicating their great potential in broad applications for disease modeling and gene therapy.


Subject(s)
Adenine , Zebrafish , Humans , Animals , Nucleotides , Catalysis , Genetic Therapy
9.
Physiol Plant ; 174(5): e13781, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36121384

ABSTRACT

Drought and high salinity affect plant growth, development, yield, and quality. MYB transcription factors (TFs) in plants play an indispensable regulatory role in resisting adverse stress. In this study, screening and functional validation of the TF FtMYB30, which can respond extensively to abiotic stress and abscisic acid (ABA), was achieved in Tartary buckwheat. FtMYB30, one of the SG22 (sub-group 22) family of R2R3-MYB TFs, localized in the nucleus and had transcriptional activation activity. Under drought and salt stress, FtMYB30 overexpression reduced the oxidative damage in transgenic plants by increasing the activity of proline content and antioxidant enzymes and significantly upregulate the expression of RD29A, RD29B, and Cu/ZnSOD, thereby enhancing drought/salt tolerance in transgenic Arabidopsis. Additionally, overexpression of FtMYB30 can reduce the sensitivity of transgenic plants to ABA. Moreover, AtRCAR1/2/3 and AtMPK6 directly interact with the FtMYB30 TF, possibly through the crosstalk between MAPKs (mitogen-activated protein kinases) and the ABA signaling pathway. Taken together, these results suggest that FtMYB30, as a positive regulator, mediates plant tolerance to salt and drought through an ABA-dependent signaling pathway.


Subject(s)
Arabidopsis , Fagopyrum , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Droughts , Salt Tolerance/genetics , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Fagopyrum/genetics , Fagopyrum/metabolism , Antioxidants/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Mitogen-Activated Protein Kinases/metabolism , Proline/metabolism , Gene Expression Regulation, Plant
10.
Front Pharmacol ; 13: 850777, 2022.
Article in English | MEDLINE | ID: mdl-35928270

ABSTRACT

Tyrosol (T), hydroxytyrosol (H), and salidroside (S) are typical phenylethanoids and also powerful dietary antioxidants. This study aimed at evaluating the influence of three natural phenylethanoids, which are dietary phenylethanoids of natural origins, on reversing gut dysbiosis and attenuating nonalcoholic fatty liver features of the liver induced by metabolic syndrome (MetS) mice. C57BL/6J female mice induced with high-fructose diet were established and administrated with salidroside, tyrosol, and hydroxytyrosol for 12 weeks, respectively. Biochemical analysis showed that S, T, and H significantly improved glucose metabolism and lipid metabolism, including reduced levels of total cholesterol insulin (INS), uric acid, low-density lipoprotein cholesterol (LDL-C), and aspartate aminotransferase (ALT). Histopathological observation of the liver confirmed the protective effects of S, T, and H against hepatic steatosis, which were demonstrated by the results of metabolomic analysis, such as the improvement in glycolysis, purine metabolism, bile acid, fatty acid metabolism, and choline metabolism. Additionally, 16S rRNA gene sequence data revealed that S, T, and H could enhance the diversity of gut microbiota. These findings suggested that S, T, and H probably suppress lipid accumulation and have hepatoprotective effects and improve intestinal microflora disorders to attenuate metabolic syndromes.

11.
Toxicology ; 476: 153252, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35792203

ABSTRACT

Diabetic cardiomyopathy (DCM) is a common heart disease in patients with diabetes mellitus (DM), and is sometimes its main cause of death. Among all the causes of DCM, myocardial cell death is considered to be the most basic pathological change. Furthermore, studies have shown that pyroptosis, the pro-inflammatory programmed cell death, contributes to the progress of DCM. MicroRNAs (miRNAs) also have been proved to take part in the formation of DCM. However, it is not clear whether and how miRNAs regulate myocardial cell pyroptosis in DCM development. In our study, the results showed that the expression of miR-223-3p was significantly increased in cardiomyocytes induced by high glucose, whereas the down-regulation of miR-223-3p weakened it. To understand the signal transduction mechanism of miR-223-3p leading to pyroptosis, we found inhibition of miR-223-3p expression down-regulated caspase-1, pro-inflammatory cytokines IL-1ß and other pyroptosis-associated poteins. Moreover, miR-223-3p repressed SPI1 expression. Furthermore, we silenced SPI1 with siRNA to mimic the effect of miR-223-3p, up-regulating the expression of caspase-1 and resulting to pyroptosis. The above findings inspired us to propose a new signaling pathway to regulate scoria of cardiomyocytes under hyperglycemia: miR-223-3p↑→ SPI1↓→ caspase-1↑ → IL-1ß and other pyroptosis-associated poteins↑→ pyroptosis↑. In summary, miR-223-3p could be a potential therapeutic target for DCM.


Subject(s)
Diabetic Cardiomyopathies , MicroRNAs , Caspase 1/genetics , Caspase 1/metabolism , Caspase 1/pharmacology , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac , Pyroptosis
12.
Genes (Basel) ; 13(6)2022 05 27.
Article in English | MEDLINE | ID: mdl-35741727

ABSTRACT

In this study, we explored the gene expression patterns of the pituitary gland and hypothalamus of Angus cows at different growth and developmental stages by deep sequencing and we identified genes that affect bovine reproductive performance to provide new ideas for improving bovine fertility in production practice. We selected three 6-month-old (weaning period), three 18-month-old (first mating period), and three 30-month-old (early postpartum) Angus cattle. The physiological status of the cows in each group was the same, and their body conformations were similar. After quality control of the sequencing, the transcriptome analyses of 18 samples yielded 129.18 GB of clean data. We detected 13,280 and 13,318 expressed genes in the pituitary gland and hypothalamus, respectively, and screened 35 and 50 differentially expressed genes (DEGs) for each, respectively. The differentially expressed genes in both tissues were mainly engaged in metabolism, lipid synthesis, and immune-related pathways in the 18-month-old cows as compared with the 6-month-old cows. The 30-month-old cows presented more regulated reproductive behavior, and pituitary CAMK4 was the main factor regulating the reproductive behavior during this period via the pathways for calcium signaling, longevity, oxytocin, and aldosterone synthesis and secretion. A variant calling analysis also was performed. The SNP inversions and conversions in each sample were counted according to the different base substitution methods. In all samples, most base substitutions were represented by substitutions between bases A and G, and the probability of base conversion exceeded 70%, far exceeding the transversion. Heterozygous SNP sites exceeded 37.68%.


Subject(s)
Hypothalamus , Pituitary Gland , Animals , Cattle/genetics , Female , Fertility/physiology , Gene Expression Profiling , Hypothalamus/metabolism , Reproduction/genetics
13.
Front Immunol ; 13: 900132, 2022.
Article in English | MEDLINE | ID: mdl-35619714

ABSTRACT

Lifestyle choices, external environment, aging, and other factors influence the synthesis of melatonin. Although the physiological functions of melatonin have been widely studied in relation to specific organs, the systemic effects of endogenous melatonin reduction has not been reported. This study evaluates the systemic changes and possible pathogenic risks in an endogenous melatonin reduction (EMR) mouse model deficient in the rate limiting enzyme in melatonin production, arylalkylamine N-acetyltransferase (Aanat) gene. Using this model, we identified a new relationship between melatonin, Alzheimer's disease (AD), and gut microbiota. Systematic changes were evaluated using multi-omics analysis. Fecal microbiota transplantation (FMT) was performed to examine the role of gut microbiota in the pathogenic risks of EMR. EMR mice exhibited a pan-metabolic disorder, with significant transcriptome changes in 11 organs, serum metabolome alterations as well as microbiota dysbiosis. Microbiota dysbiosis was accompanied by increased gut permeability along with gut and systemic inflammation. Correlation analysis revealed that systemic inflammation may be related to the increase of Ruminiclostridium_5 relative abundance. 8-month-old EMR mice had AD-like phenotypes, including Iba-1 activation, A ß protein deposition and decreased spatial memory ability. Moreover, EMR mice showed decreased anti stress ability, under high-fat diet, EMR mice had greater body weight and more obvious hepatic steatosis compared with WT group. FMT improved gut permeability, systemic inflammation, and AD-related phenotypes, while reducing obesity in EMR mice. Our findings suggest EMR causes systemic changes mediated by gut microbiota dysbiosis, which may be a pathogenic factor for AD and obesity, we further proved the gut microbiota is a potential target for the prevention and treatment of AD and obesity.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Melatonin , Alzheimer Disease/etiology , Animals , Dysbiosis , Inflammation , Melatonin/pharmacology , Mice , Obesity/metabolism
14.
Oxid Med Cell Longev ; 2022: 3589525, 2022.
Article in English | MEDLINE | ID: mdl-35251469

ABSTRACT

Farnesoid X receptors (FXR) are bile acid receptors that play roles in lipid, glucose, and energy homeostasis. Synthetic FXR-specific agonists have been developed for treating nonalcoholic fatty liver disease (NAFLD) patients. However, the detailed mechanism remains unclear. To investigate the effects of FXR on NAFLD and the possible mechanism, FXR-null mice were fed either a normal or a high-fat diet. The FXR-null mice developed hepatomegaly, steatosis, accumulation of lipid droplets in liver cells, glucose metabolism disorder, and elevated serum lipid levels. Transcriptomic results showed increased expression of key lipid synthesis and glucose metabolism-related proteins. We focused on pyruvate dehydrogenase kinase 4 (PDK4), a key enzyme involved in the regulation of glucose and fatty acid (FA) metabolism and homeostasis. Subsequently, we confirmed an increase in PDK4 expression in FXR knockout cells. Moreover, inhibition of PDK4 expression alleviated lipid accumulation in hepatocytes caused by FXR deficiency in vivo and in vitro. Our results identify FXR as a nuclear transcription factor that regulates glucose and lipid metabolism balance through PDK4, providing further insights into the mechanism of FXR agonists in the treatment of metabolic diseases.


Subject(s)
Glucose Metabolism Disorders/complications , Glucose Metabolism Disorders/metabolism , Lipid Metabolism Disorders/complications , Lipid Metabolism Disorders/metabolism , Liver Diseases/complications , Liver Diseases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction/genetics , Animals , Diet, High-Fat , Fatty Acids/metabolism , Gene Knockout Techniques/methods , Glucose/metabolism , Glucose Metabolism Disorders/genetics , HEK293 Cells , Hepatocytes/metabolism , Humans , Lipid Metabolism Disorders/genetics , Liver/metabolism , Liver Diseases/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Transfection/methods , Triglycerides/metabolism
15.
Int Urol Nephrol ; 54(9): 2317-2325, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35133575

ABSTRACT

OBJECTIVE: To evaluate the clinical characteristics and outcomes of patients with nephropathy associated with POEMS syndrome who received novel agents in combination with dexamethasone therapy, and renal pathological changes based on repeat biopsy in some patients after these novel-agent-based therapies. METHODS: The records of patients with nephropathy associated with POEMS syndrome in a single hospital from May 2017 to February 2021 were retrieved and studied in detail. All the patients received four cycles of initial novel-agent-based regimens such as bortezomib and dexamethasone (BD) or thalidomide plus dexamethasone (TD) or lenalidomide plus dexamethasone (RD) treatment. We further evaluated the pathological efficacy of these novel agents by repeat renal biopsy. RESULTS: Twelve patients with an average age of 48.6 ± 8.3 years diagnosed with nephropathy associated with POEMS syndrome were enrolled in this study. The duration from disease onset to renal biopsy was 28(8.3 ~ 54.5) months. All patients achieved good clinical responses in different degree after four cycles of initial novel agents in combination with dexamethasone therapy. After the treatment with novel-agent-based regimens, the levels of proteinuria decreased in most patients and were negative in five patients. The levels of serum creatinine (SCr) decreased in ten patients. Serum M protein was negative in four patients and still positive in the other eight patients. The levels of serum vascular endothelial growth factor (VEGF) were detected in seven patients, which were all decreased. The levels of interleukin-6 (IL-6) were detected in eight patients, which were also decreased. Repeat biopsies were performed after four cycles of novel-agent-based therapies in four patients who were all treated with BD treatment. Mesangiolysis, mesangial cells proliferation, endothelial cells proliferation, subendothelial space widening and acute renal tubulointerstitial lesions improved, the chronic renal tubulointerstitial lesions were stable. CONCLUSIONS: Novel agents improved clinical manifestations in patients with nephropathy associated with POEMS syndrome. In addition, novel-agent-based regimens such as BD treatment improved renal pathological manifestations, which suggested that novel agents could improve renal prognosis of the patients from the perspective of renal pathology.


Subject(s)
Kidney Diseases , POEMS Syndrome , Adult , Dexamethasone/therapeutic use , Endothelial Cells , Humans , Kidney Diseases/chemically induced , Lenalidomide/therapeutic use , Middle Aged , POEMS Syndrome/complications , POEMS Syndrome/drug therapy , Thalidomide/adverse effects , Thalidomide/therapeutic use , Vascular Endothelial Growth Factor A
16.
Mitochondrial DNA B Resour ; 6(12): 3501-3502, 2021.
Article in English | MEDLINE | ID: mdl-34869891

ABSTRACT

The complete chloroplast genome of Trollius macropetalus was sequenced in this study. It has a cyclic tetrad structure typical of angiosperms. The total length is 160,094 bp, including a large single copy region (LSC) with a length of 88,555 bp, a small single copy region (SSC) with a length of 18,291 bp and two equal-length inverted repeat regions (IRA/IRB) with a length of 26,624 bp. It encodes a total of 137 genes, including 87 protein-coding genes, 42 tRNA genes, and 8 rRNA genes, with a CG content of 38.03%.

17.
Front Med (Lausanne) ; 8: 761656, 2021.
Article in English | MEDLINE | ID: mdl-34950680

ABSTRACT

Background: Some septic shock patients have persistent hyperlactacidemia despite a normal systemic hemodynamics after resuscitation. Central venous oxygen saturation (ScvO2), mean arterial pressure (MAP), and central venous pressure (CVP) cannot be target in subsequent hemodynamic treatments. Vasoplegia is considered to be one of the main causes of oxygen metabolism abnormalities in septic shock patients, and norepinephrine (NE) is the first-line vasopressor in septic shock treatment; its dosage represents the severity of vasoplegia. This study was performed to determine whether vasoplegia, as assessed by NE dosage, can indicate patients' lactate clearance after the completion of resuscitation. Methods: A retrospective study was performed, and 106 patients with septic shock in an intensive care unit were analyzed. Laboratory values and hemodynamic variables were obtained upon completion of resuscitation (H 0) and 6 h after (H 6). Lactate clearance was defined as the percent decrease in lactate from H 0 to H 6. Student's t-test, Mann-Whitney U-test, Chi-square or Fisher's exact tests, logistic regression analysis, and receiver operating characteristic (ROC) curve analysis were performed for statistical analysis. Results: Patients with a mean age of 63.7 ± 13.8 years, baseline APACHE II score of 21.0 ± 5.1, and SOFA score of 12.7 ± 2.7 were enrolled. The study found that after 6-h of resuscitation, lactate clearance (LC) was <10% in 33 patients (31.1%). Patients with 6-h LC <10% compared with 6-h LC ≥ 10% had a higher NE dose (µg·kg-1·min-1) (0.55 [0.36-0.84] vs. 0.25 [0.18-0.41], p < 0.001). Multivariate logistic regression analysis of statistically significant univariate variables showed that NE dose had a significant inverse relationship with 6-h LC < 10%. The cutoff for NE was ≥ 0.32 µg·kg-1·min-1 for predicting 6-h lactate clearance after resuscitation, with a sensitivity of 75.76% and a specificity of 70.00%. Septic shock patients with an NE dose ≥ 0.32 µg·kg-1·min-1, relative to patients with an NE dose < 0.32 µg·kg-1·min-1, had a greater 30-day mortality rate (69.8% vs. 26.4% p < 0.001). Conclusion: Some patients with septic shock had persistent oxygen metabolism disorders after hemodynamic resuscitation. NE dose may indicate vasoplegia and oxygen metabolism disorder. After resuscitation, septic shock patients with high-dose NE have lower lactate clearance and a greater 30-day mortality rate than those with low-dose NE.

18.
Front Cardiovasc Med ; 8: 694219, 2021.
Article in English | MEDLINE | ID: mdl-34604348

ABSTRACT

Sleep deprivation (SD) may lead to serious myocardial injury in cardiovascular diseases. Saponins extracted from the roots of Panax notoginseng, a traditional Chinese medicine beneficial to blood circulation and hemostasis, are the main bioactive components exerting cardiovascular protection in the treatment of heart disorders, such as arrhythmia, ischemia and reperfusion injury, and cardiac hypertrophy. This study aimed to explore the protective effect of stem-leaf saponins from Panax notoginseng (SLSP) on myocardial injury in SD mice. SD was induced by a modified multi-platform method. Cardiac morphological changes were assessed by hematoxylin and eosin (H&E) staining. Heart rate and ejection fraction were detected by specific instruments. Serum levels of atrial natriuretic peptide (ANP) and lactate dehydrogenase (LDH) were measured with biochemical kits. Transmission electron microscopy (TEM), immunofluorescent, and Western blotting analysis were used to observe the process and pathway of autophagy and apoptosis in heart tissue of SD mice. In vitro, rat H9c2 cells pretreated with rapamycin and the effect of SLSP were explored by acridine orange staining, transient transfection, flow cytometry, and Western blotting analysis. SLSP prevented myocardial injury, such as morphological damage, accumulation of autophagosomes in heart tissue, abnormal high heart rate, serum ANP, and serum LDH induced by SD. In addition, it reversed the expressions of proteins involved in the autophagy and apoptosis and activated PI3K/Akt/mTOR signaling pathway that is disturbed by SD. On H9c2 cells induced by rapamycin, SLSP could markedly resume the abnormal autophagy and apoptosis. Collectively, SLSP attenuated excessive autophagy and apoptosis in myocardial cells in heart tissue induced by SD, which might be acted through activating PI3K/Akt/mTOR signaling pathway.

19.
Phytomedicine ; 91: 153681, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34371252

ABSTRACT

BACKGROUND: Cardiac hypertrophy is the early stage of many heart diseases, such as coronary heart disease, hypertension, valvular dysfunction and cardiomyopathy. Cardiomyocyte autophagy and apoptosis play an important role in the process of cardiac hypertrophic response. Plantago asiatica L. seeds extract (PASE) is prepared from a traditional herbal medicine in Asia with tremendous pharmacological activities. However, whether PASE could relieve cardiac hypertrophy has not been elucidated. The present study is aimed to investigate the effect of PASE on cardiac hypertrophy and explore its potential underlying mechanism. METHODS: Cardiac hypertrophy was induced in C57BL/6 mice by subcutaneous injection of isoproterenol (ISO) for two weeks. Meanwhile, the mice were intraperitoneally injected with PASE at dosages of 20, 40 and 80 mg/kg/day. Cardiac hypertrophy was evaluated by echocardiographic examination, haematoxylin and eosin staining and quantitative real-time polymerase chain reaction. Expressions of proteins involved in autophagy and apoptosis such as Beclin1, p62, LC3II, Bax, Bcl-2 and Cleaved-caspase-3 were detected by western blot analysis. Western blot, transient transfection, acridine orange staining, TUNEL staining and autophagy inducer were used to observe the effect and explore the mechanism of PASE on cardiomyocyte and H9c2 cells with excessive autophagy and apoptosis induced by ISO. RESULTS: ISO induction for two weeks disturbed the myocardial contractility and cardiac function of left ventricles of mice. PASE treated mice showed significantly improved cardiac function indexes, including EF, FS, SV and CO, compared with the ISO group. Treatment with PASE also decreased the heart weight/body weight ratio and cardiomyocyte size, and downregulated the mRNA and protein expressions of hypertrophic markers ANP, BNP, and ß-MHC. Furthermore, the changes of autophagy and apoptosis markers, such as LC3II, Beclin1, p62, Bcl-2, Bax and Cleaved-caspase-3 induced by ISO were resumed by PASE treatment. Consistently, PASE demonstrated similar effects on ISO-induced H9c2 cells as it did in vivo. In addition, PASE could counteract the increased autophagy induced by the autophagy inducer, rapamycin. CONCLUSION: PASE attenuated ISO-induced cardiac hypertrophy in mice by inhibiting excessive autophagy and apoptosis in cardiomyocytes. The novel findings may pave the way for the clinical usage of PASE for the prevention of heart diseases related with cardiac hypertrophy.


Subject(s)
Cardiomegaly , Myocytes, Cardiac , Plant Extracts , Plantago , Animals , Apoptosis/drug effects , Autophagy/drug effects , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cell Line , Isoproterenol , Mice , Mice, Inbred C57BL , Plant Extracts/pharmacology , Plantago/chemistry , Seeds/chemistry
20.
Exp Mol Pathol ; 121: 104665, 2021 08.
Article in English | MEDLINE | ID: mdl-34216584

ABSTRACT

Abnormal metabolism and uncontrolled angiogenesis are two important characteristics of malignant tumors. Although HBXIP is known to be associated with a poor prognosis for bladder cancer (BC), its effects on glycolysis and angiogenesis in BC have not been investigated. BC prognosis and relative gene expression of HBXIP were analyzed using the GEPIA, UALCAN, and STRING databases. BC cell angiogenesis and glycolysis were assessed by vasculogenic mimicry and glycolysis assay. Human umbilical vein endothelial cell (HUVEC) viability, migration, and angiogenesis were assessed by CCK8, transwell, wound healing, and tube formation assays. The results showed that HBXIP was highly expressed in BC tissues and cells. Knockdown of HBXIP expression decreased the levels of glucose uptake, lactate production, and glycolytic enzyme expression in BC cells, and decreased cell viability and migration of HUVECs. Additionally, silencing HBXIP reduced the total length of tubes and number of intersections, and EPO and VEGF protein expression in BC cells and HUVECs. Furthermore, knockdown of HBXIP expression reversed cell viability, migration, tube formation, and vasculogenic mimicry under high glucose and lactate conditions. Mechanistically, silencing of HBXIP reduced the protein expression levels of pAKT-ser473 and pmTOR, and inhibition of HBXIP, AKT, and mTOR expression decreased glycolytic enzyme protein expression. Our findings suggest that HBXIP reduces glycolysis in BC cells via regulation of AKT/mTOR signaling, thereby blocking BC angiogenesis. Collectively, this study provides a potential strategy to target HBXIP and AKT/mTOR for regulating glycolysis progression concurrently with anti-angiogenesis effects, and thereby develop novel therapeutics for the treatment of BC.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Glycolysis , Neovascularization, Pathologic/pathology , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Urinary Bladder Neoplasms/blood supply , Adaptor Proteins, Signal Transducing/genetics , Cell Movement , Cell Proliferation , Cell Survival , Human Umbilical Vein Endothelial Cells , Humans , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction , TOR Serine-Threonine Kinases/genetics , Tumor Cells, Cultured , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...