Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(4): 113987, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38517888

ABSTRACT

Cultivating drought-tolerant tea varieties enhances both yield and quality of tea plants in northern China. However, the mechanisms underlying their drought tolerance remain largely unknown. Here we identified a key regulator called CsREV, which differentially regulates xylem patterns between leaves and stems, thereby conferring drought tolerance in tea plants. When drought occurs, upregulation of CsREV activates the CsVND7a-dependent xylem vessel differentiation. However, when drought persists, the vessel differentiation is hindered as CsVND7a is downregulated by CsTCP4a. This, combined with the CsREV-promoted secondary-cell-wall thickness of xylem vessel, leads to the enhanced curling of leaves, a characteristic closely associated with plant drought tolerance. Notably, this inhibitory effect of CsTCP4a on CsVND7a expression is absent in stems, allowing stem xylem vessels to continuously differentiate. Overall, the CsREV-CsTCP4-CsVND7 module is differentially utilized to shape the xylem patterns in leaves and stems, potentially balancing water transportation and utilization to improve tea plant drought tolerance.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Leaves , Plant Proteins , Plant Stems , Xylem , Xylem/metabolism , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Stems/metabolism , Plant Stems/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Camellia sinensis/physiology , Camellia sinensis/genetics , Camellia sinensis/metabolism , Adaptation, Physiological
2.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33737397

ABSTRACT

Oncogenic RasV12 cells [A. Simcox et al., PLoS Genet 4, e1000142 (2008)] injected into adult males proliferated massively after a lag period of several days, and led to the demise of the flies after 2 to 3 wk. The injection induced an early massive transcriptomic response that, unexpectedly, included more than 100 genes encoding chemoreceptors of various families. The kinetics of induction and the identities of the induced genes differed markedly from the responses generated by injections of microbes. Subsequently, hundreds of genes were up-regulated, attesting to intense catabolic activities in the flies, active tracheogenesis, and cuticulogenesis, as well as stress and inflammation-type responses. At 11 d after the injections, GFP-positive oncogenic cells isolated from the host flies exhibited a markedly different transcriptomic profile from that of the host and distinct from that at the time of their injection, including in particular up-regulated expression of genes typical for cells engaged in the classical antimicrobial response of Drosophila.


Subject(s)
Gene Expression Profiling , Immunity , Neoplasms/genetics , Neoplasms/immunology , Transcriptome , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Disease Models, Animal , Disease Resistance , Drosophila , Genes, Reporter , Humans , Immunity, Innate
3.
Insect Sci ; 28(1): 63-76, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32037698

ABSTRACT

The Decapentaplegic (Dpp) and Wingless (Wg) signal pathways play important roles in numerous biological processes in Drosophila. The Drosophila vestigial (vg) gene is selectively required for wing imaginal disc cell proliferation, which is essential for the formation of the adult wing and halter structures, and is regulated by Dpp and Wg signaling. Using a Drosophila invasion model of wing epithelium, we showed herein that inhibition of Dpp or Wg signaling promoted cells to migrate across the cell lineage restrictive anterior/posterior (A/P) compartment boundary. Being downstream of both Dpp and Wg signaling, vg can block cell migration induced by loss of either pathway. In addition, suppression of vg is sufficient to induce cell migration across the A/P boundary. Transcriptomic analysis revealed potential downstream genes involved in the cell migration after suppressing vg in the wing disc. We further demonstrated that the c-Jun N-terminal kinase (JNK) signaling promoted cell migration induced by vg suppression by upregulating Caspase activity. Taken together, our results revealed the requirement of Vg for suppressing cell migration and clarified how developmental signals collaborate to stabilize cells along the compartment boundary.


Subject(s)
Apoptosis/genetics , Cell Movement/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , MAP Kinase Signaling System , Nuclear Proteins/genetics , Wings, Animal/growth & development , Animals , Caspases , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Larva/genetics , Larva/growth & development , Larva/physiology , Nuclear Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...