Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Water Sci Technol ; 88(9): 2409-2422, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37966191

ABSTRACT

The use of nanoscale zero-valent iron (nZVI) to remove heavy metal ions like Ni2+ from groundwater has been extensively studied; however, the compositional transformation of the Ni2+ and Fe0 during the removal is not clearly comprehensible. This study provides an insight into the componential, structural, and morphological transformations of Ni2+ and Fe0 at a solid-liquid interface using various characterization devices. The underlying mechanism of transformation was investigated along with the toxicity/impact of the transformed products on the groundwater ecosystem. The results indicated that Fe0 is transformed into lath-like lepidocrocite (γ-FeOOH), twin-crystal goethite (α-FeOOH), and spherical magnetite (Fe3O4), while Ni2+ is converted into Fe0.7Ni0.3 alloy and Fe-Ni composite (trevorite - NiFe2O4) with a fold-fan morphology. The Fe0 transformation mechanism includes the redox of Fe0 with Ni2+, H2O, and dissolved oxygen, the combination of Fe2+ and OH- produced by Fe0 corrosion to amorphous ferrihydrite, and the further mineralogical transformation to Fe oxides with the aid of Fe2+ adsorbed on ferrihydrite. The conversion of Ni2+ is accomplished by reduction by Fe0 and surface coordination with Fe oxides. Compared with Ni2+ and Fe0, the toxicity and bioavailability of the transformed products are significantly reduced, hence conducive to the application of zero-valent iron technology in groundwater remediation.


Subject(s)
Ferric Compounds , Groundwater , Iron Compounds , Minerals , Water Pollutants, Chemical , Iron/chemistry , Ecosystem , Water Pollutants, Chemical/chemistry , Oxides , Groundwater/chemistry
2.
Environ Technol ; 44(24): 3676-3684, 2023 Oct.
Article in English | MEDLINE | ID: mdl-35442165

ABSTRACT

ABSTRACTThe dechlorination of 2,4-dichlorophenol (2,4-DCP) by a nanoscale Fe/Ni material was investigated at room temperature. 2,4-DCP can be removed more quickly by an Fe/Ni material with 2% Ni. Fe/Ni exhibited excellent adsorption and reduction efficiency toward 2,4-DCP in an aqueous solution over a wide range of pH values. The removal rate of 2,4-DCP exceeded 95% in 60 min in the pH range of 3.0-9.0, and more than 75% was dechlorinated to phenol (CA). The degradation pathway of 2,4-DCP was confirmed based on analysis of the intermediate and end products. A portion of 2,4-DCP was first dechlorinated with a chlorine atom to produce 2-chlorophenol and 4-chlorophenol, and then dechlorination was performed sequentially to form CA. The other portion of 2,4-DCP was dechlorinated to remove two chlorine atoms simultaneously to generate CA. The investigations are essential to the application of iron-based remediation technology.


Subject(s)
Chlorophenols , Nanoparticles , Water Pollutants, Chemical , Chlorine , Nickel , Hydrogen-Ion Concentration
3.
Materials (Basel) ; 15(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35683256

ABSTRACT

Attapulgite (ATP) disaggregated by a ball milling-freezing process was used to support Fe/Ni bimetallic nanoparticles (nFe/Ni) to obtain a composite material of D-ATP-nFe/Ni for the dechlorination degradation of 2,4-dichlorophenol (2,4-DCP), thus improving the problem of agglomeration and oxidation passivation of nanoscale zero-valent iron (nFe) in the dechlorination degradation of chlorinated organic compounds. The results show that Fe/Ni nanoparticle clusters were dispersed into single spherical particles by the ball milling-freezing-disaggregated attapulgite, in which the average particle size decreased from 423.94 nm to 54.51 nm, and the specific surface area of D-ATP-nFe /Ni (97.10 m2/g) was 6.9 times greater than that of nFe/Ni (14.15 m2/g). Therefore, the degradation rate of 2,4-DCP increased from 81.9% during ATP-nFe/Ni application to 96.8% during D-ATP-nFe/Ni application within 120 min, and the yield of phenol increased from 57.2% to 86.1%. Meanwhile, the reaction rate Kobs of the degradation of 2,4-DCP by D-ATP-nFe/Ni was 0.0277 min-1, which was higher than that of ATP-nFe/Ni (0.0135 min-1). In the dechlorination process of 2,4-DCP by D-ATP-nFe/Ni, the reaction rate for the direct dechlorination of 2,4-DCP of phenol (k5 = 0.0156 min-1) was much higher than that of 4-chlorophenol (4-CP, k2 = 0.0052 min-1) and 2-chlorophenol (2-CP, k1 = 0.0070 min-1), which suggests that the main dechlorination degradation pathway for the removal of 2,4-DCP by D-ATP-nFe/Ni was directly reduced to phenol by the removal of two chlorine atoms. In the secondary pathway, the removal of one chlorine atom from 2,4-DCP to generate 2-CP or 4-CP as intermediate was the rate controlling step. The final dechlorination product (phenol) was obtained when the dechlorination rate accelerated with the progress of the reaction. This study contributes to the broad topic of organic pollutant treatment by the application of clay minerals.

4.
Materials (Basel) ; 15(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35269159

ABSTRACT

The removal of chlorinated pollutants from water by nanoparticles is a hot topic in the field of environmental engineering. In this work, a novel technique that includes the coupling effect of n-Fe/Ni and its transformation products (FeOOH) on the removal of p-chloronitrobenzene (p-CNB) and its reduction products, p-chloroaniline (p-CAN) and aniline (AN), were investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to characterize the nano-iron before and after the reaction. The results show that Fe0 is mainly oxidized into lath-like lepidocrocite (γ-FeOOH) and needle-like goethite (α-FeOOH) after 8 h of reaction. The coupling removal process and the mechanism are as follows: Fe0 provides electrons to reduce p-CNB to p-CAN and then dechlorinates p-CAN to AN under the catalysis of Ni. Meanwhile, Fe0 is oxidized to FeOOH by the dissolved oxygen and H2O. AN is then adsorbed by FeOOH. Finally, p-CNB, p-CAN, and AN were completely removed from the water. In the pH range between 3 and 7, p-CAN can be completely dechlorinated by n-Fe/Ni within 20 min, while AN can be nearly 100% adsorbed by FeOOH within 36 h. When the temperature ranges from 15 °C to 35 °C, the dechlorination rate of p-CAN and the removal rate of AN are less affected by temperature. This study provides guidance on the thorough remediation of water bodies polluted by chlorinated organics.

5.
Materials (Basel) ; 15(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35161200

ABSTRACT

The porous-material loading and noble-metal doping of nanoscale zero-valent iron (nFe) have been widely used as countermeasures to overcome its limitations. However, few studies focused on the experimental identification of the roles of Fe, the carrier and the doped metal in the application of nFe. In this study, the nitroreduction and dechlorination of p-chloronitrobenzene (p-CNB) by attapulgite-supported Fe/Ni nanoparticles (ATP-nFe/Ni) were investigated and the roles of Fe, Ni and attapulgite were examined. The contributions of Ni are alleviating the oxidization of Fe, acting as a catalyst to trigger the conversion of H2 to H*(active hydrogen atom) and promoting electron transfer of Fe. The action mechanisms of Fe in reduction of -NO2 to -NH2 were confirmed to be electron transfer and to produce H2 via corrosion. When H2 is catalyzed to H* by Ni, the production H* leads to the nitroreduction. In additon, H* is also responsible for the dechlorination of p-CNB and its nitro-reduced product, p-chloroaniline. Another corrosion product of Fe, Fe2+, is incapable of acting in the nitroreduction and dechlorination of p-CNB. The roles of attapulgite includes providing an anoxic environment for nFe, decreasing nFe agglomeration and increasing reaction sites. The results indicate that the roles of Fe, Ni and attapulgite in nitroreduction and dechlorination of p-CNB by ATP-nFe/Ni are crucial to the application of iron-based technology.

6.
Materials (Basel) ; 14(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34361261

ABSTRACT

The adsorption capacity of synthetic NaX zeolite for Pb2+, Cd2+, Cu2+ and Zn2+ in single and multi-component systems were investigated. The effects of electronegativity and hydration energy on the selective adsorption, as well as potential selective adsorption mechanism of the NaX zeolite for Pb2+, Cd2+, Cu2+ and Zn2+ were also discussed. The maximum adsorption capacity order of the heavy metals in the single system was Pb2+ > Cd2+ > Cu2+ > Zn2+, and this could be related to their hydration energy and electronegativity. The values of the separation factors (α) and affinity constant (KEL) in different binary systems indicated that Pb2+ was preferentially adsorbed, and Zn2+ presented the lowest affinity for NaX zeolite. The selective adsorption capacities of the metals were in the order, Pb2+ > Cd2+ ≈ Cu2+ > Zn2+. The trend for the selective adsorption of NaX zeolite in ternary and quaternary systems was consistent with that in the binary systems. Pb2+ and Cu2+ reduced the stability of the Si-O-Al bonds and the double six-membered rings in the NaX framework, due to the high electronegativity of Pb2+ and Cu2+ than that of Al3+. The selective adsorption mechanism of NaX zeolite for the high electronegative metal ions could mainly result from the negatively charged O in the Si-O-Al structure of the NaX zeolite, hence heavy metal ions with high electronegativity display a strong affinity for the electron cloud of the oxygen atoms in the Si-O-Al. This study could evaluate the application and efficiency of zeolite in separating and recovering certain metal ions from industrial wastewater.

7.
Materials (Basel) ; 14(9)2021 May 05.
Article in English | MEDLINE | ID: mdl-34063100

ABSTRACT

A novel Ba(II)/TiO2-MCM-41 composite was synthesized using binary mixtures with Ba2+/TiO2 and MCM-41, and Ba2+ as a doping ion of TiO2. The specific surface area and pore structure characterizations confirm that a mesoporous structure with a surface area of 341.2 m2/g and a narrow pore size distribution ranging from 2 to 4 nm was achieved using Ba(II)/TiO2-MCM-41. Ba(II)/TiO2 particles were synthesized into 10-15 nm particles and were well dispersed onto MCM-41. The diffraction peaks in the XRD patterns of TiO2-MCM-41 and Ba(II)/TiO2-MCM-41 were all attributed to anatase TiO2. By taking advantage of MCM-41 and Ba2+, the photocatalytic performance of Ba(II)/TiO2-MCM-41 was remarkably enhanced by suppressing its rutile phase, by lowering the band gap energy, and by facilitating the dispersion of TiO2. Therefore, the photodegradation efficiencies of p-nitrobenzoic acid (4 × 10-4 mol/L) by various photocatalysts (60 min) under UV light irradiation are arranged in the following order: Ba(II)/TiO2-MCM-41 (91.7%) > P25 (86.3%) > TiO2-MCM-41 (80.6%) > Ba(II)/TiO2 (55.7%) > TiO2 (53.9%). The Ba(II)/TiO2-MCM-41 composite was reused for five cycles and maintained a high catalytic activity (73%).

8.
Water Sci Technol ; 83(12): 2886-2900, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34185686

ABSTRACT

Nanoscale zero-valent iron (nZVI) and sulfides have been confirmed to be effective in arsenic sequestration from aqueous solution. In this study, attapulgite supported and sulfide-modified nanoscale zero-valent iron (S-nZVI@ATP) are synthesized to realize the superposition effect of enhanced arsenic sequestration. The results indicated that nZVI clusters were well disaggregated and the BET specific surface area increased from 19.61 m2·g-1 to 46.04 m2·g-1 of S-nZVI@ATP, resulting in an enhanced removal efficiency of arsenic from 51.4% to 65.1% at 20 min. The sulfides in S-nZVI@ATP mainly exist as mackinawite (FeS) and this causes the spherical nanoparticles to exhibit a larger average particle size (94.6 nm) compared to bare nZVI (66.0 nm). In addition, S-nZVI@ATP exhibited a prominent ability for arsenic sequestration over a wide pH range of 3.0-6.0. The presence of anions SO42- and Cl- can enhance the arsenic removal whereas HCO3- inhibited it. The arsenic adsorption by S-nZVI@ATP could be explained by the pseudo-second-order kinetic model and the Langmuir model, with the maximum adsorption capacity of 193.8 mg·g-1. The mechanism of As(III) sequestration by S-nZVI@ATP involved multiple processes, mainly including precipitation conversion from FeS to As2S3, surface-complexation adsorption and co-precipitation.


Subject(s)
Arsenic , Water Pollutants, Chemical , Adsorption , Iron , Kinetics , Water Pollutants, Chemical/analysis
9.
J Hazard Mater ; 412: 125246, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33548776

ABSTRACT

Transformation of chloro-organic compounds by nFe(0) has been studied extensively, but limited study exists on the transformation and fate of nFe(0) during the dechlorination of chloro-organics even though such knowledge is important in predicting its surface chemistry, particularly, toxicity in the environment. In this study, the nFe(0) core became hollowed, collapsed and gradually corroded into poorly crystallized ferrihydrite (Fe5O3(OH)9) at the pristine reaction time, which later gave rise to lath-like lepidocrocite (γ-FeOOH), acicular goethite (α-FeOOH) and cubic magnetite (Fe3O4) by the end of the reaction time (120 min). Also, dechlorination of 2,4-DCP into 2-CP, 4-CP and phenol was achieved within 120 min. The rapid dechlorination of 2,4-DCP and transformation of nFe(0) could not be achieved significantly without doping Ni on nFe(0) and supporting on attapulgite. The schematic representation of the transformation and compositional evolution of nFe(0) in A-nFe/Ni was proposed. These findings are critical in understanding the compositional evolution and the fate of nFe(0) upon reaction with chloro-organics and can provide guidance for more efficient uses of the nFe(0) reactivity towards the target contaminants in groundwater remediation.

10.
Sci Total Environ ; 715: 136822, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32023522

ABSTRACT

Zero-valent iron (ZVI), Fe2+ and H2 are possible electron donors in the reduction of Cr(VI) by nanoscale ZVI (n-ZVI). However, it is often ambiguous about the roles of these electron donors in the reductive removal of Cr(VI) from groundwater and wastewater. This study investigated the action mechanisms of Fe and Ni in Cr(VI) reduction by Fe/Ni nanoparticles (n-Fe/Ni). Among the three possible reduction mechanisms of ZVI, direct electron transfer from ZVI and its corrosion product, Fe2+, were confirmed to be responsible for the reduction removal of Cr(VI). H2, another product of ZVI corrosion, was found incapable of reducing Cr(VI). In addition, the secondary metal Ni in n-Fe/Ni was found to facilitate the direct electron transfer from ZVI owing to its ability to inhibit the passivation of ZVI and to enhance the production of Fe2+ due to the formation of FeNi galvanic cells. The results of characterizations on n-Fe/Ni before and after the reaction with Cr(VI) demonstrated that Cr(VI) was reduced to Cr(III), which existed as FeCr2O4 precipitates on the surface of n-Fe/Ni, resulting in effective sequestration of Cr(VI). These findings are important for understanding the main mechanisms of bimetallic nanoparticles or nanomaterials for reductive immobilization of Cr(VI), and may guide further ZVI-based technology development for remediation of contaminated water or soil with redox-active contaminants.

11.
Sci Total Environ ; 697: 133996, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31476504

ABSTRACT

Three possible dechlorination mechanisms of chloroorganics by nanoscale zero-valent iron (n-ZVI) have been proposed and widely accepted, however, the main mechanism is still controversial and not verified by experimental results. In this study, 2,4-dichlorophenol (2,4-DCP) was selected as the target pollutant and the experiments were carried out for the screening of the main mechanism of 2,4-DCP dechlorination by n-ZVI and Fe/Ni nanoparticles (n-Fe/Ni). The results indicated that >95% of 2,4-DCP could be dechlorinated to phenol by n-Fe/Ni within 120 min, while 2,4-DCP could hardly be dechlorinated by n-ZVI particles. The active hydrogen atom (H*) that transformed from H2 under the catalysis of Ni was responsible for >90% of 2,4-DCP dechlorination by n-Fe/Ni and <10% of the dechlorination was attributed to the direct electron transfer from ZVI. Fe2+ was not able to dechlorinate 2,4-DCP. Correspondently, Ni in n-Fe/Ni mainly acted as a catalyst, while the acceleration of electron transfer from ZVI by Ni had a positive effect on 2,4-DCP dechlorination. The investigations on the relative importance of these three mechanisms are essential to iron-based remediation technology.

12.
Int J Ophthalmol ; 5(4): 424-9, 2012.
Article in English | MEDLINE | ID: mdl-22937499

ABSTRACT

AIM: To evaluate the biological functions of tissue-engineered human corneal epithelium (TE-HCEP) by corneal transplantation in limbal stem cell deficiency (LSCD) rabbit models. METHODS: TE-HCEPs were reconstructed with DiI-labeled untransfected HCEP cells and denuded amniotic membrane (dAM) in air-liquid interface culture, and their morphology and structure were characterized by hematoxylin-eosin (HE) staining of paraffin-sections, immunohistochemistry and electron microscopy. LSCD models were established by mechanical and alcohol treatment of the left eyes of New Zealand white rabbits, and their eyes were transplanted with TE-HCEPs with dAM surface outside by lamellar keratoplasty (LKP). Corneal transparency, neovascularization, thickness, and epithelial integrality of both traumatic and post transplantation eyes were checked once a week by slit-lamp corneal microscopy, a corneal pachymeter, and periodic acid-Schiff (PAS) staining. At day 120 post surgery, the rabbits in each group were sacrificed and their corneas were examined by DiI label observation, HE staining, immunohistochemistry and electron microscopy. RESULTS: After cultured for 5 days on dAM, HCEP cells, maintaining keratin 3 expression, reconstructed a 6-7 layer TE-HCEP with normal morphology and structure. The traumatic rabbit corneas, entirely opaque, conjunctivalized and with invaded blood vessels, were used as LSCD models for TE-HCEP transplantation. After transplantation, obvious edema was not found in TE-HCEP-transplanted corneas which became more and more transparent, the invaded blood vessels reduced gradually throughout the monitoring period. The corneas decreased to normal thickness on day 25, while those of dAM eyes were over 575µm in thickness during the monitoring period. A 4-5 layer of epithelium consisting of TE-HCEP originated cells attached tightly to the anterior surface of stroma was reconstructed 120 days after TE-HCEP transplantation, which was similar to the normal control eye in morphology and structure. In contrast, intense corneal edema, turbid, invaded blood vessels were found in dAM eyes, and no multilayer epithelium was found but only a few scattered conjunctiva-like cells appeared. CONCLUSION: The TE-HCEP, with similar morphology and structure to those of innate HCEP, could reconstruct a multilayer corneal epithelium with normal functions in restoring corneal transparency and thickness of LSCD rabbits after transplantation. It may be a promising HCEP equivalent for clinical therapy of corneal epithelial disorders.

13.
Fish Shellfish Immunol ; 31(6): 1059-64, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21963856

ABSTRACT

To understand the defense mechanisms of Crustacean animals, brine shrimp Artemia sinica prophenoloxidase (AsproPO) cDNA was cloned and its expression at early developmental stages was examined by reverse-transcription PCR (RT-PCR) and semi-quantitative RT-PCR, and activity of phenoloxidase (PO) at different developmental stages was further detected by using l-3,4-dihydroxyphenylalanine (l-DOPA) as a specific substrate in this study. It was found that the full-length of AsproPO cDNA is 2125 bp and it contains an open reading frame of 2100 bp encoding a protein of 699 amino acids. The deduced amino acid sequence of AsproPO has two putative copper binding sites highly conserved in Arthropods. Semi-quantitative RT-PCR analyses showed that the gene of AsproPO expressed at Emergence, Instar I and Instar II stages but did not at 0 h and 6 h stages. Activity measurement showed that PO activity could only be detected at Instar II stage but the other measured stages. All these implied that Artemia proPO immune system was complexly modulated during early development.


Subject(s)
Artemia/enzymology , Artemia/immunology , Catechol Oxidase/genetics , Catechol Oxidase/metabolism , Enzyme Precursors/genetics , Enzyme Precursors/metabolism , Gene Expression Regulation, Developmental/immunology , Life Cycle Stages/immunology , Amino Acid Sequence , Animals , Base Sequence , Binding Sites/genetics , Copper/metabolism , DNA, Complementary/genetics , Levodopa/metabolism , Molecular Sequence Data , Open Reading Frames/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
14.
Acta Biochim Biophys Sin (Shanghai) ; 43(9): 722-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21757454

ABSTRACT

Phenoloxidase from Artemia sinica (AsPO) was purified by Superdex 200 gel-filtration and Q Sepharose fast flow ion-exchange chromatography, and its properties were characterized biochemically and enzymatically by using L-dihydroxyphenylalanine (L-DOPA) as the specific substrate. Results showed that AsPO was isolated as a monomeric protein of 125.5 kDa in molecular mass. The optimal pH value and temperature are 7.0 and 50°C, respectively, for its PO activity. The AsPO had an apparent K(m) value of 4.2 mM on L-DOPA, and 10.9 mM on catechol, respectively. Oxidase inhibitor on PO activity showed that the AsPO was extremely sensitive to ascorbic acid, sodium sulfite, and citric acid; and was very sensitive to cysteine, benzoic acid, and 1-phenyl-2-thiourea. Combined with its specific enzyme activity on L-DOPA and catechol, it can be concluded that AsPO is most probably a typical catechol-type O-diphenoloxidase. Its PO activity was also sensitive to metal ions and chelators, and 20 mM DETC-inhibited PO activity was obviously recovered by 15 mM Cu(2+), indicating that AsPO is most probably a copper-containing metalloenzyme. All these data about specific substrate, sensitivity to oxidase inhibitor metal ions and chelators indicate that the AsPO has the properties of a catechol-type copper-containing O-diphenoloxidase that functions as a vital humoral factor in host defense via melaninization as in other Crustaceans.


Subject(s)
Artemia/enzymology , Monophenol Monooxygenase/isolation & purification , Monophenol Monooxygenase/metabolism , Animals , Ascorbic Acid/pharmacology , Benzoic Acid/pharmacology , Biocatalysis/drug effects , Catechol Oxidase/metabolism , Catechols/metabolism , Citric Acid/pharmacology , Copper/chemistry , Cysteine/pharmacology , Electrophoresis, Polyacrylamide Gel , Enzyme Assays , Enzyme Inhibitors/pharmacology , Hydrogen-Ion Concentration , Kinetics , Levodopa/metabolism , Molecular Weight , Monophenol Monooxygenase/chemistry , Phenylthiourea/pharmacology , Substrate Specificity , Sulfites/pharmacology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...