Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Int J Biol Sci ; 20(7): 2388-2402, 2024.
Article in English | MEDLINE | ID: mdl-38725844

ABSTRACT

Metastasis is the leading cause of death in colorectal cancer (CRC) patients. By mediating intercellular communication, exosomes exhibit considerable value in regulating tumor metastasis. Long non-coding RNAs (lncRNAs) are abundant in exosomes and participate in regulating tumor progression. However, it is poorly understood how the cancer-secreted exosomal lncRNAs affect CRC proliferation and metastasis. Here, by analyzing the public databases we identified a lncRNA SNHG3 and demonstrated that SNHG3 was delivered through CRC cells-derived exosomes to promote metastasis in CRC. Mechanistically, exosomal SNHG3 was internalized by CRC cells and afterward upregulated the expression of ß-catenin by facilitating the intranuclear transport of hnRNPC. Consequently, the RNA stability of ß-catenin was enhanced which led to the activation of EMT and metastasis of CRC cells. Our findings expand the oncogenic mechanisms of exosomal SNHG3 and identify it as a diagnostic marker for CRC.


Subject(s)
Colorectal Neoplasms , Exosomes , RNA, Long Noncoding , beta Catenin , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , beta Catenin/metabolism , Exosomes/metabolism , Cell Line, Tumor , RNA Stability/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Animals , Mice , Cell Proliferation/genetics , Mice, Nude
2.
Comput Biol Med ; 172: 108265, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461698

ABSTRACT

Convolution operation is performed within a local window of the input image. Therefore, convolutional neural network (CNN) is skilled in obtaining local information. Meanwhile, the self-attention (SA) mechanism extracts features by calculating the correlation between tokens from all positions in the image, which has advantage in obtaining global information. Therefore, the two modules can complement each other to improve feature extraction ability. An effective fusion method is a problem worthy of further study. In this paper, we propose a CNN and SA paralleling network CSAP-UNet with U-Net as backbone. The encoder consists of two parallel branches of CNN and Transformer to extract the feature from the input image, which takes into account both the global dependencies and the local information. Because medical images come from certain frequency bands within the spectrum, their color channels are not as uniform as natural images. Meanwhile, medical segmentation pays more attention to lesion regions in the image. Attention fusion module (AFM) integrates channel attention and spatial attention in series to fuse the output features of the two branches. The medical image segmentation task is essentially to locate the boundary of the object in the image. The boundary enhancement module (BEM) is designed in the shallow layer of the proposed network to focus more specifically on pixel-level edge details. Experimental results on three public datasets validate that CSAP-UNet outperforms state-of-the-art networks, particularly on the ISIC 2017 dataset. The cross-dataset evaluation on Kvasir and CVC-ClinicDB shows that CSAP-UNet has strong generalization ability. Ablation experiments also indicate the effectiveness of the designed modules. The code for training and test is available at https://github.com/zhouzhou1201/CSAP-UNet.git.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer
3.
Genomics ; 116(2): 110821, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38447684

ABSTRACT

Prefoldin Subunit 5 (PFDN5) plays a critical role as a member of the prefoldins (PFDNs) in maintaining a finely tuned equilibrium between protein production and degradation. However, there has been no comprehensive analysis specifically focused on PFDN5 thus far. Here, a comprehensive multi-omics (transcriptomics, genomics, and proteomics) analysis, systematic molecular biology experiments (in vitro and in vivo), transcriptome sequencing and PCR Array were performed for identifying the value of PFDN5 in pan-cancer, especially in Gastric Cancer (GC). We found PFDN5 had the potential to serve as a prognostic and therapeutic biomarker in GC. And PFDN5 could promote the proliferation of GC cells, primarily by affecting the cell cycle, cell death and immune process etc. These findings provide novel insights into the molecular mechanisms and precise treatments of in GC.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Prognosis , Multiomics , Genomics , Biomarkers
4.
Eur J Med Res ; 29(1): 107, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326910

ABSTRACT

BACKGROUND: DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic responses. Nonetheless, the characteristics and significance of DDR alterations in clear cell renal cell carcinoma (ccRCC) remain undefined. This study aimed to explore the predictive role, molecular mechanism, and tumor immune profile of DDR genes in ccRCC. METHODS: We prospectively sequenced 757 tumors and matched blood DNA samples from Chinese patients with ccRCC using next-generation sequencing (NGS) and analyzed data from 537 patients from The Cancer Genome Atlas (TCGA). A comprehensive analysis was performed. RESULTS: Fifty-two percent of Chinese patients with ccRCC harbored DDR gene mutations and 57% of TCGA patients. The immunotherapy treatment prognosis of patients with DDR gene mutations was superior to that of patients without DDR gene mutations (p = 0.047). DDR gene mutations were associated with more gene mutations and a higher tumor mutation load (TMB, p < 0.001). Moreover, patients with DDR gene mutations have a distinct mutational signature compared with those with wild-type DDR. Furthermore, the DDR-mut group had elevated neoantigen load (including single-nucleotide variants (SNV) and indel neoantigen load, p = 0.037 and p = 0.002, respectively), TCR Shannon (p = 0.025), and neutrophils (p = 0.010). DDR gene mutations exhibited a distinct immune profile with significantly higher expression levels of TNFSF9, CD70, ICAM1, and indoleamine-2,3-dioxygenase (IDO) and lower expression levels of VTCN1 and IL12A. CONCLUSIONS: Our data suggest that the detection of somatic mutations in DDR genes can predict the efficacy of immunotherapy in patients with ccRCC. Furthermore, we revealed the unique molecular and immune mechanisms underlying ccRCC with DDR gene mutations.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Prognosis , Mutation , Kidney Neoplasms/genetics , DNA Repair/genetics
5.
Cancer Control ; 31: 10732748241232324, 2024.
Article in English | MEDLINE | ID: mdl-38408865

ABSTRACT

BACKGROUND: Cervical cancer remains a threat to female health due to high mortality. Clarification of the long-term trend of survival rate over time and the associated risk factors would be greatly informative to improve the prognosis of cervical cancer patients. METHODS: This retrospective study was based on data extracted from the Surveillance, Epidemiology, and End Results (SEER) database of the United States. The 3-year and 5-year overall survival rates of patients with cervical cancer during 2002-2006, 2007-2011, and 2012-2016 were analyzed. Period analysis was used to assess the variation in survival rate stratified by age, race, and socioeconomic status during the 15-year study period and then predicted the relative survival rate in the following period from 2017 to 2021. RESULTS: During 2002-2016, the 3-year relative survival rate of cervical cancer patients increased from 73.1% to 73.5% with a high jump between 2007 and 2011. This upward trend is expected to continue to 74.3% between 2017 and 2021. Patients older than 60 years, black ethnicity, or medium and high poverty status were likely to have a lower relative survival rate. CONCLUSION: This study confirmed the increased relative survival rate of cervical cancer patients over years and identified relevant risk factors. Targeted initiatives for elderly and socially underprivileged individuals may be able to mitigate inequality.


Why was the study conducted? Cervical cancer is one of the most common cancers endangering global women's health. Although there are currently relevant screening methods and vaccines, cervical cancer still leads to a higher risk of death in infected women and poses a serious threat to women's health. Therefore, it would be informative for future policy making if the risk factors affecting prognosis were assessed and the trend of long-term survival rate of patients with cervical cancer over time was predicted.What did the researchers do? We extracted data on cervical cancer patients from the Surveillance, Epidemiology, and End Results (SEER) database between 2002 and 2016 and used a model-based period analysis to assess the characteristics of the 3- and 5-year relative survival rates of cervical cancer patients stratified by age, race, and socioeconomic status. The relative survival rate for the period from 2017 to 2021 was projected.What did the researchers find? Our study found that the 3-year relative survival rate for cervical cancer patients increased from 73.1% to 73.5% between 2002 and 2016, with a jump between 2007 and 2011. Patients older than 60 years, those of black ethnicity, or those with medium and high poverty status were more likely to have a low relative survival rate.What do the findings mean? Our study confirms that the relative survival rate of cervical cancer patients has increased in recent years and has maintained an overall upward trend. Our findings suggest that age, race, and socioeconomic status are relevant risk factors. These findings would help us to predict future trends, better allocate medical resources, and optimize health policies to improve the prognosis of cervical cancer, such as targeting the elderly and other vulnerable groups.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , United States/epidemiology , Aged , Uterine Cervical Neoplasms/epidemiology , Survival Rate , Retrospective Studies , SEER Program , Social Class
6.
World J Surg Oncol ; 21(1): 373, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38031058

ABSTRACT

OBJECTIVE: To assess the feasibility and safety of three-dimensional (3D) laparoscopic nephrectomy in combination with bench surgery and autotransplantation for treating highly complex renal tumors. MATERIALS AND METHODS: The clinical data of six patients with highly complex renal cell carcinoma were collected. All patients underwent 3D laparoscopic nephrectomy in combination with bench surgery and autotransplantation by the same surgeons, two of them had previously undergone laparoscopic partial nephrectomy for contralateral renal cancer. RESULTS: The total operative time was 366 ± 65 min, the warm ischemia time (WIT) was 1.3 ± 0.4 min, and the cold ischemia time was 121 ± 26 min. While one patient received a diluted autologous blood transfusion, the intraoperative blood loss was 217 ± 194 ml. No increase in the serum creatinine (SCr) level was observed at postoperative day 30 compared with the preoperative time, and none of the patients received dialysis either during the hospital stay or to date. Although one patient underwent nephrectomy due to tumor recurrence in the transplanted kidney, the others reported no tumor recurrence or distant metastases on imaging to date. CONCLUSION: 3D laparoscopic nephrectomy, when combined with bench surgery and autotransplantation, can become a feasible option for treating highly complex renal cell carcinoma cases when expecting to preserve renal function maximally.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Laparoscopy , Humans , Carcinoma, Renal Cell/surgery , Carcinoma, Renal Cell/pathology , Transplantation, Autologous , Kidney Neoplasms/surgery , Kidney Neoplasms/pathology , Nephrectomy/methods , Kidney/physiology , Kidney/pathology , Retrospective Studies , Treatment Outcome
7.
Opt Lett ; 48(20): 5415-5418, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37831881

ABSTRACT

A cascading Brillouin random fiber laser with a dual pump (DP-CBRFL) is proposed and demonstrated. The DP-CBRFL can improve the Brillouin gain significantly to achieve an ultra-narrow linewidth (95.5 Hz) with 200 mW pump power, due to two cascading Brillouin gain fibers with an identical Brillouin frequency shift. Compared with the general Brillouin random fiber laser, the proposed random fiber laser has a more stable Brillouin gain spectrum and a lower mode density, which makes it have a lower intensity noise and frequency noise, especially in the low-frequency range. Meanwhile, it exhibits a high slope efficiency of 28% even if the pump power has reached 1.1 W due to the strong suppression ability of the high-order Stokes light.

8.
Front Cell Dev Biol ; 11: 1173803, 2023.
Article in English | MEDLINE | ID: mdl-37691826

ABSTRACT

Introduction: Metabolic dysregulation is a widely acknowledged contributor for the development and tumorigenesis of colorectal cancer (CRC), highlighting the need for reliable prognostic biomarkers in this malignancy. Methods: Herein, we identified key genes relevant to CRC metabolism through a comprehensive analysis of lactate metabolism-related genes from GSEA MsigDB, employing univariate Cox regression analysis and random forest algorithms. Clinical prognostic analysis was performed following identification of three key genes, and consistent clustering enabled the classification of public datasets into three patterns with significant prognostic differences. The molecular pathways and tumor microenvironment (TME) of these patterns were then investigated through correlation analyses. Quantitative PCR was employed to quantify the mRNA expression levels of the three pivotal genes in CRC tissue. Single-cell RNA sequencing data and fluorescent multiplex immunohistochemistry were utilized to analyze relevant T cells and validate the correlation between key genes and CD4+ T cells. Results: Our analysis revealed that MPC1, COQ2, and ADAMTS13 significantly stratify the cohort into three patterns with distinct prognoses. Additionally, the immune infiltration and molecular pathways were significantly different for each pattern. Among the key genes, MPC1 and COQ2 were positively associated with good prognosis, whereas ADAMTS13 was negatively associated with good prognosis. Single-cell RNA sequencing (scRNA-seq) data illustrated that the relationship between three key genes and T cells, which was further confirmed by the results of fluorescent multiplex immunohistochemistry demonstrating a positive correlation between MPC1 and COQ2 with CD4+ T cells and a negative correlation between ADAMTS13 and CD4+ T cells. Discussion: These findings suggest that the three key lactate metabolism genes, MPC1, COQ2, and ADAMTS13, may serve as effective prognostic biomarkers and support the link between lactate metabolism and the immune microenvironment in CRC.

9.
ACS Macro Lett ; 12(9): 1201-1206, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37610013

ABSTRACT

In this work, Fe3O4 nanoparticles anchored with dopamine molecules were developed via bioinspired iron-catechol coordination interactions, and the dopamine-modified Fe3O4 surface was linked to the matrix through strong interfacial interactions between the nanoparticles and the epoxy vitrimer. Results showed that the typical dynamic parameters of vitrimer could be readily adjusted in the epoxy vitrimer composites. These findings demonstrate that it is efficient to adjust the dynamic properties of vitrimers by introducing the metal-coordination bonds into epoxy vitrimer networks. The synergy of metal-catechol coordination and transesterification enriched the mechanism of dynamic regulation. In addition, the epoxy vitrimer composites were responsive to temperature and near-infrared light. The scratch could be successfully healed with 1 min on the surface of vitrimer composites under NIR irradiation even for the 1% addition of Fe3O4 nanoparticles. This approach shows potential to be generally applicable to different types of metal-coordination systems.

10.
J Pharmacol Sci ; 153(1): 46-54, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37524454

ABSTRACT

Premature ovarian insufficiency (POI) is a clinical syndrome that declines ovarian function in women. Berberine (BBR) is a compound with anti-inflammatory, antioxidant, and anti-apoptotic activities. However, the role of BBR on POI is still unknown. In this study, we investigated the role of BBR on ovarian function decline by establishing a POI mouse model using cyclophosphamide (CTX) and busulfan (BU). Our results showed that POI was attenuated by BBR, which was evidenced by enhanced body weight and ovarian weight, improved morphology of ovary, increased the number of healthy follicles, decreased the production of atretic follicles and restored serum hormone levels, including estradiol, anti-Müllerian hormone and follicle-stimulating hormone. In addition, we showed that germ cell function markers, mouse vasa homologue (MVH) and octamer-binding transcription factor 4 (OCT4) were enhanced by BBR, at both protein and mRNA levels. Furthermore, our results revealed that BBR inhibited inflammation and oxidative stress by reducing nuclear factor kappa B (NF-κB) and enhancing nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. Taken together, we demonstrate that BBR can effectively improve ovarian function in POI mice, which is mainly mediated by reducing oxidative stress and inflammatory response. Our study also provides new strategy for POI treatment.


Subject(s)
Berberine , Primary Ovarian Insufficiency , Mice , Female , Humans , Animals , Busulfan/adverse effects , Berberine/pharmacology , Berberine/therapeutic use , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/prevention & control , Primary Ovarian Insufficiency/metabolism , Cyclophosphamide/toxicity , Estradiol
11.
Comput Struct Biotechnol J ; 21: 3383-3403, 2023.
Article in English | MEDLINE | ID: mdl-37389187

ABSTRACT

Background: Cuproptosis, a novel identified cell death form induced by copper, is characterized by aggregation of lipoylated mitochondrial enzymes and the destabilization of Fe-S cluster proteins. However, the function and potential clinical value of cuproptosis and cuproptosis-related biomarkers in colorectal cancer (CRC) remain largely unknown. Methods: A comprehensive multi-omics (transcriptomics, genomics, and single-cell transcriptome) analysis was performed for identifying the influence of 16 cuproptosis-related markers on clinical status, molecular functions and tumor microenvironment (TME) in CRC. A novel cuproptosis-related scoring system (CuproScore) based on cuproptosis-related markers was also constructed to predict the prognosis of CRC individuals, TME and the response to immunotherapy. In addition, our transcriptome cohort of 15 paired CRC tissue, tissue-array, and various assays in 4 kinds of CRC cell lines in vitro were applied for verification. Results: Cuproptosis-related markers were closely associated with both clinical prognosis and molecular functions. And the cuproptosis-related molecular phenotypes and scoring system (CuproScore) could distinguish and predict the prognosis of CRC patients, TME, and the response to immunotherapy in both public and our transcriptome cohorts. Besides, the expression, function and clinical significance of these markers were also checked and analyzed in CRC cell lines and CRC tissues in our own cohorts. Conclusions: In conclusion, we indicated that cuproptosis and CPRMs played a significant role in CRC progression and in modeling the TME. Inducing cuproptosis may be a useful tool for tumor therapy in the future.

12.
Cancer Cell Int ; 23(1): 96, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37202800

ABSTRACT

BACKGROUND: Changes in Polyamine metabolism (PAM) have been shown to establish a suppressive tumor microenvironment (TME) and substantially influence the progression of cancer in the recent studies. However, newly emerging data have still been unable to fully illuminate the specific effects of PAM in human cancers. Here, we analyzed the expression profiles and clinical relevance of PAM genes in colorectal cancer (CRC). METHODS: Based on unsupervised consensus clustering and principal component analysis (PCA) algorithm, we designed a scoring model to evaluate the prognosis of CRC patients and characterize the TME immune profiles, with related independent immunohistochemical validation cohort. Through comparative profiling of cell communities defined by single cell sequencing data, we identified the distinct characteristics of polyamine metabolism in the TME of CRC. RESULTS: Three PAM patterns with distinct prognosis and TME features were recognized from 1224 CRC samples. Moreover, CRC patients could be divided into high- and low-PAMscore subgroups by PCA-based scoring system. High PAMscore subgroup were associated to more advanced stage, higher infiltration level of immunosuppressive cells, and unfavorable prognosis. These results were also validated in CRC samples from other public CRC datasets and our own cohort, which suggested PAM genes were ideal biomarkers for predicting CRC prognosis. Notably, PAMscore also corelated with microsatellite instability-high (MSI-H) status, higher tumor mutational burden (TMB), and increased immune checkpoint gene expression, implying a potential role of PAM genes in regulating response to immunotherapy. To further confirm above results, we demonstrated a high-resolution landscape of TME and cell-cell communication network in different PAM patterns using single cell sequencing data and found that polyamine metabolism affected the communication between cancer cells and several immune cells such as T cells, B cells and myeloid cells. CONCLUSION: In total, our findings highlighted the significance of polyamine metabolism in shaping the TME and predicting the prognosis of CRC patients, providing novel strategies for immunotherapy and the targeting polyamine metabolites.

13.
Cancer Cell Int ; 23(1): 95, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37198617

ABSTRACT

BACKGROUND: Emerging studies have shown that pyroptosis plays a non-negligible role in the development and treatment of tumors. However, the mechanism of pyroptosis in colorectal cancer (CRC) remains still unclear. Therefore, this study investigated the role of pyroptosis in CRC. METHODS: A pyroptosis-related risk model was developed using univariate Cox regression and LASSO Cox regression analyses. Based on this model, pyroptosis-related risk scores (PRS) of CRC samples with OS time > 0 from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database were calculated. The abundance of immune cells in CRC tumor microenvironment (TME) was predicted by single-sample gene-set enrichment analysis (ssGSEA). Then, the responses to chemotherapy and immunotherapy were predicted by pRRophetic algorithm, the tumor immune dysfunction and exclusion (TIDE) and SubMap algorithms, respectively. Moreover, the Cancer Therapeutics Response Portal (CTRP) and PRISM Repurposing dataset (PRISM) were used to explore novel drug treatment strategies of CRC. Finally, we investigated pyroptosis-related genes in the level of single-cell and validated the expression levels of these genes between normal and CRC cell lines by RT-qPCR. RESULTS: Survival analysis showed that CRC samples with low PRS had better overall survival (OS) and progression-free survival (PFS). CRC samples with low PRS had higher immune-related gene expression and immune cell infiltration than those with high PRS. Besides, CRC samples with low PRS were more likely to benefit from 5-fluorouracil based chemotherapy and anti-PD-1 immunotherapy. In novel drug prediction, some compounds such as C6-ceramide and noretynodrel, were inferred as potential drugs for CRC with different PRS. Single-cell analysis revealed pyroptosis-related genes were highly expressed in tumor cells. RT-qPCR also demonstrated different expression levels of these genes between normal and CRC cell lines. CONCLUSIONS: Taken together, this study provides a comprehensive investigation of the role of pyroptosis in CRC at the bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) levels, advances our understanding of CRC characteristics, and guides more effective treatment regimens.

14.
Entropy (Basel) ; 25(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37238487

ABSTRACT

Quantum key distribution (QKD) has great potential in ensuring data security. Deploying QKD-related devices in existing optical fiber networks is a cost-effective way to practically implement QKD. However, QKD optical networks (QKDON) have a low quantum key generation rate and limited wavelength channels for data transmission. The simultaneous arrival of multiple QKD services may also lead to wavelength conflicts in QKDON. Therefore, we propose a resource-adaptive routing scheme (RAWC) with wavelength conflicts to achieve load balancing and efficient utilization of network resources. Focusing on the impact of link load and resource competition, this scheme dynamically adjusts the link weights and introduces the wavelength conflict degree. Simulation results indicate that the RAWC algorithm is an effective approach to solving the wavelength conflict problem. Compared with the benchmark algorithms, the RAWC algorithm can improve service request success rate (SR) by up to 30%.

15.
Opt Express ; 31(5): 8152-8159, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36859931

ABSTRACT

In a photon-counting fiber Bragg grating (FBG) sensing system, a shorter probe pulse width reaches a higher spatial resolution, which inevitably causes a spectrum broadening according to the Fourier transform theory, thus affecting the sensitivity of the sensing system. In this work, we investigate the effect of spectrum broadening on a photon-counting FBG sensing system with a dual-wavelength differential detection method. A theoretical model is developed, and a proof-of-principle experimental demonstration is realized. Our results give a numerical relationship between the sensitivity and spatial resolution at the different spectral widths of FBG. In our experiment, for a commercial FBG with a spectral width of 0.6 nm, an optimal spatial resolution of 3 mm and a corresponding sensitivity of 2.03 nm-1 can be achieved.

16.
J Med Biochem ; 42(2): 232-238, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36987411

ABSTRACT

Background: To explore the role of LncFEZF1-AS1 in renal cell carcinoma (RCC) tissues and cells, and the possible molecular mechanism. Methods: Expressions of LncFEZF1-AS1 in RCC tissues and adjacent ones were detected. The association of LncFEZF1-AS1 level with clinical data of RCC patients was also analyzed. Besides, the differential expressions of LncFEZF1-AS1 in a variety of RCC cell lines were also determined. Then the LncFEZF1-AS1 knockdown model was constructed in RCC cell line to further determine the influences of LncFEZF1-AS1 on the proliferative ability and migration of RCC cells through CCK8 and Transwell experiments. Furthermore, luciferase reporter gene experiment were used to validate the combination of LncFEZF1-AS1 to ETNK1. Results: Results suggested that expression of LncFEZF1-AS1 was noticeably higher in RCC tumor tissues and the RCC cells. Clinical pathological data analysis also suggested that high LncFEZF1-AS1 expression was in correlation with the pathological stage and the incidence of distant metastasis in RCC patients, and the poor overall survival rate. In vitro experiments demonstrated that knocking down of LncFEZF1-AS1 markedly repressed the proliferation and migration of RCC cell lines. Bioinformatics suggested that LncFEZF1-AS1 can interact with the downstream target gene ETNK1, which was confirmed by the luciferase reporter gene experiments. Western Blot results revealed that knocking down of LncFEZF1-AS1 markedly enhanced ETNK1. qRT-PCR analysis indicated that ETNK1 level was under-expressed in RCC tissues and in negative correlation with LncFEZF1-AS1. Further experiments suggested that knockdown of ETNK1 partially reversed the inhibitory effects of LncFEZF1-AS1 silencing on the proliferative and migrative abilities of RCC cells. Conclusions: LncFEZF1-AS1 could facilitation the proliferative and migration of RCC cells by regulating the expression of ETNK1. Therefore, FEZF1-AS1 might function as a cancer-promoting factor and possible new therapeutic target for RCC.

17.
Biomark Res ; 11(1): 28, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36890557

ABSTRACT

Immune checkpoint inhibitors (ICIs) targeting PD-1 or PD-L1 have emerged as a revolutionary treatment strategy for human cancer patients. However, as the response rate to ICI therapy varies widely among different types of tumours, we are beginning to gain insight into the mechanisms as well as biomarkers of therapeutic response and resistance. Numerous studies have highlighted the dominant role of cytotoxic T cells in determining the treatment response to ICIs. Empowered by recent technical advances, such as single-cell sequencing, tumour-infiltrating B cells have been identified as a key regulator in several solid tumours by affecting tumour progression and the response to ICIs. In the current review, we summarized recent advances regarding the role and underlying mechanisms of B cells in human cancer and therapy. Some studies have shown that B-cell abundance in cancer is positively associated with favourable clinical outcomes, while others have indicated that they are tumour-promoting, implying that the biological function of B cells is a complex landscape. The molecular mechanisms involved multiple aspects of the functions of B cells, including the activation of CD8+ T cells, the secretion of antibodies and cytokines, and the facilitation of the antigen presentation process. In addition, other crucial mechanisms, such as the functions of regulatory B cells (Bregs) and plasma cells, are discussed. Here, by summarizing the advances and dilemmas of recent studies, we depicted the current landscape of B cells in cancers and paved the way for future research in this field.

18.
Adv Sci (Weinh) ; 10(13): e2206662, 2023 May.
Article in English | MEDLINE | ID: mdl-36809583

ABSTRACT

Integrating adaptative logic computation directly into soft microrobots is imperative for the next generation of intelligent soft microrobots as well as for the smart materials to move beyond stimulus-response relationships and toward the intelligent behaviors seen in biological systems. Acquiring adaptivity is coveted for soft microrobots that can adapt to implement different works and respond to different environments either passively or actively through human intervention like biological systems. Here, a novel and simple strategy for constructing untethered soft microrobots based on stimuli-responsive hydrogels that can switch logic gates according to the surrounding stimuli of environment is introduced. Different basic logic gates and combinational logic gates are integrated into a microrobot via a straightforward method. Importantly, two kinds of soft microrobots with adaptive logic gates are designed and fabricated, which can smartly switch logic operation between AND gate and OR gate under different surrounding environmental stimuli. Furthermore, a same magnetic microrobot with adaptive logic gate is used to capture and release the specified objects through the change of the surrounding environmental stimuli based on AND or OR logic gate. This work contributes an innovative strategy to integrate computation into small-scale untethered soft robots with adaptive logic gates.

19.
Ying Yong Sheng Tai Xue Bao ; 34(1): 229-234, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36799398

ABSTRACT

To identify the resistance risk and the resistance mechanism of avermectin against Dendrolimus punctatus, we examined the cross-resistance of avermectin resistance population (AV) to multiple tested insecticides and the synergism of piperonyl butoxide (PBO), triphenyl phosphate (TPP) and diethyl maleate (DEM) to AV, Qin-ling Jieguanting (JGT) and susceptible (S) popultions, by leaf dipping method. The activities of carboxylesterase (CarE), glutathione S-transferases (GST) and mixed-functional oxidases (MFOs) in AV, JGT and S populations of D. punctatus was measured with spectrophotometry. The results showed that the AV population of D. punctatus had medium level of cross-resistance to emamectin benzoate (resistance ratio, RR50=25.0), chlorpyrifos (RR50=19.0), and cyhalothrin (RR50=15.4), and low level of cross-resistance to chlorfenapyr (RR50=8.1), but no cross-resistance to spinetoram, spinosad and chlorantraniliprole. Both PBO and TPP had significant synergism of avermectin to AV, JGT, and S populations, while DEM had no synergism to all the three populations. Compared with the S population, the AV population had higher content of MFOs cytochromes P450(3.5-fold) and b5(3.1-fold) and the activities of O-demethylase (4.1-fold) and CarE (2.2-fold). There was no significant difference in the activities of GST between AV and S populations. The increasing mixed-functional oxidases and CarE played an important role in the resistance of D. punctatus to avermectin. Spinetoram, spinosad, chlorantraniliprole, and avermectin were recommended to control D. punctatus.


Subject(s)
Insecticide Resistance , Insecticides , Insecticides/pharmacology , Oxidoreductases
20.
BMC Urol ; 23(1): 17, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36782230

ABSTRACT

BACKGROUND: Alveolar soft part sarcoma (ASPS) is a rare kind of malignant soft tissue tumor with undefined differentiation, of which the incidence rate accounts for only 0.5-1.0% among all kinds of soft tissue tumors. An even rarer ASPS occurs in kidney. CASE PRESENTATION: Here we reported a case of a 7-year-old girl diagnosed with nephrogenic ASPS, regarding the analyses of the incidence, clinical manifestation, pathology and genetic diagnosis, in order to deepen the recognition of the disease. CONCLUSIONS: ASPS is very rare, and tends to occur to young patients. It is very significant to precisely diagnose ASPS at an early stage, which will be the key point for the following treatment choices and prognosis.


Subject(s)
Sarcoma, Alveolar Soft Part , Soft Tissue Neoplasms , Female , Humans , Child , Sarcoma, Alveolar Soft Part/genetics , Sarcoma, Alveolar Soft Part/diagnosis , Sarcoma, Alveolar Soft Part/pathology , Prognosis , Kidney/pathology , Soft Tissue Neoplasms/diagnosis , Soft Tissue Neoplasms/pathology , Incidence
SELECTION OF CITATIONS
SEARCH DETAIL
...