Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Front Neurosci ; 18: 1381385, 2024.
Article in English | MEDLINE | ID: mdl-38784092

ABSTRACT

Objective: Mesial temporal lobe epilepsy (mTLE) is a complex neurological disorder that has been recognized as a widespread global network disorder. The group-level structural covariance network (SCN) could reveal the structural connectivity disruption of the mTLE but could not reflect the heterogeneity at the individual level. Methods: This study adopted a recently proposed individual structural covariance network (IDSCN) method to clarify the alternated structural covariance connection mode in mTLE and to associate IDSCN features with the clinical manifestations and regional brain atrophy. Results: We found significant IDSCN abnormalities in the ipsilesional hippocampus, ipsilesional precentral gyrus, bilateral caudate, and putamen in mTLE patients than in healthy controls. Moreover, the IDSCNs of these areas were positively correlated with the gray matter atrophy rate. Finally, we identified several connectivities with weak associations with disease duration, frequency, and surgery outcome. Significance: Our research highlights the role of hippo-thalamic-basal-cortical circuits in the pathophysiologic process of disrupted whole-brain morphological covariance networks in mTLE, and builds a bridge between brain-wide covariance network changes and regional brain atrophy.

2.
ACS Appl Mater Interfaces ; 16(19): 24908-24919, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38706177

ABSTRACT

Perovskite nanocrystal (PeNC) arrays are showing a promising future in the next generation of micro-light-emitting-diode (micro-LED) displays due to the narrow emission linewidth and adjustable peak wavelength. Electrohydrodynamic (EHD) inkjet printing, with merits of high resolution, uniformity, versatility, and cost-effectiveness, is among the competent candidates for constructing PeNC arrays. However, the fabrication of red light-emitting CsPbBrxI(3-x) nanocrystal arrays for micro-LED displays still faces challenges, such as low brightness and poor stability. This work proposes a design for a red PeNC colloidal ink that is specialized for the EHD inkjet printing of three-dimensional PeNC arrays with enhanced luminescence and stability as well as being adaptable to both rigid and flexible substrates. Made of a mixture of PeNCs, polymer polystyrene (PS), and a nonpolar xylene solvent, the PeNC colloidal ink enables precise control of array sizes and shapes, which facilitates on-demand micropillar construction. Additionally, the inclusion of PS significantly increases the brightness and environmental stability. By adopting this ink, the EHD printer successfully fabricated full-color 3D PeNC arrays with a spatial resolution over 2500 ppi. It shows the potential of the EHD inkjet printing strategy for high-resolution and robust PeNC color conversion layers for micro-LED displays.

3.
Nano Lett ; 24(12): 3661-3669, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38408021

ABSTRACT

The lack of stability of red perovskite nanocrystals (PeNCs) remains the main problem that restricts their patterning application. In this work, the dual-ligand passivation strategy was introduced to stabilize PeNCs and inhibit their halogen ion migration during high-voltage electrohydrodynamic (EHD) inkjet printing. The as-printed red arrays exhibit the highest emisson intensity and least blue shift compared with samples with other passivation strategies under a high electric field during EHD inkjet printing. Combining with blue and green PeNC inks, single-color and tricolor color conversion layer arrays were successfully printed, with minimum pixel size of 5 µm and the highest spatial resolution of 2540 dpi. The color coordinate of CsPbBrI2 NCs arrays are located close to the red point, with a color gumat of 97.28% of Rec. 2020 standard. All of these show great potential in the application of color conversion layers in a near-eye micro-LED display.

4.
Pathol Res Pract ; 254: 155165, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38286053

ABSTRACT

Epileptic seizures are frequently the first symptom in glioma patients. However, the causal relationship between glioma and epilepsy is not yet fully understood, as it cannot be explained solely by tumor mass effect or peritumoral factors. In this study, we retrospectively enrolled 320 patients with grade 2-4 glioma who received treatment between January 2019 and July 2022, and explored the biomarkers of seizure occurrence and seizure outcome prediction using univariate and multivariate logistic regression analyses. Our results showed that IDH1 R132H mutation was an independent risk factor for seizure occurrence in lower-grade glioma (LGG) patients (OR = 4.915, 95%CI = 1.713 - 14.103, P = 0.003). Additionally, IDH1 R132H mutation predicted higher seizure-free ratios in LGG patients with intact ATRX expression (OR = 6.793, 95%CI = 1.217 - 37.923, P = 0.029) one year after diagnosis. Therefore, our findings suggest that IDH1 mutation can predict seizure occurrence and control in LGG patients, providing further insights into the relationship between glioma and epilepsy.


Subject(s)
Brain Neoplasms , Epilepsy , Glioma , Adult , Humans , Brain Neoplasms/complications , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Retrospective Studies , Glioma/complications , Glioma/genetics , Glioma/pathology , Seizures/genetics , Prognosis , Mutation , Epilepsy/complications , Isocitrate Dehydrogenase/genetics
5.
Front Neurol ; 14: 1261104, 2023.
Article in English | MEDLINE | ID: mdl-38099072

ABSTRACT

Rasmussen encephalitis is a rare and unexplained chronic brain hemispheric inflammatory disease. We report a case of epilepsy in which magnetoencephalography showed dipoles localized only in the operculum. Because the patient's clinical presentation and examination findings did not meet the diagnostic criteria for Rasmussen encephalitis, he underwent cortical electroencephalogram (ECoG) record and limited resection surgery. However, the seizures were not relieved after surgery, and imaging findings showed significant features of hemisphere atrophy. This young male patient was eventually diagnosed with Rasmussen encephalitis and the seizures was completely vanished following hemispherectomy. His data can provide a reference for the early identification of this devastating disease.

6.
Medicine (Baltimore) ; 102(35): e34931, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37657032

ABSTRACT

Primary central nervous system lymphoma (PCNSL) is a rare and special type of non-Hodgkin lymphoma with a significantly worse median overall prognosis than that of non-Hodgkin lymphoma outside the brain. Clarifying the genomic characteristics and alterations in PCNSL could provide clues regarding its distinctive pathophysiology and new treatment options. However, current knowledge about the genomics of PCNSL is limited. In this study, next-generation sequencing (NGS) was performed to investigate the genomic profile of PCNSL. Samples from 12 patients diagnosed with PCNSL at our institution were analyzed for gene mutations using NGS. This study showed that missense mutations were the most common mutation type. C > A/G > T accounted for most of the single-base mutations, which reflected the preference of the tumor sample mutation type and may serve as an important prognostic factor. The most significantly mutated gene was myeloid differentiation factor 88 (MYD88) (0.55), followed by CD79B, LRP1B, and PRDM1 (0.36). None of the cases showed a high tumor mutational burden. In addition to the traditional driver genes, we also identified some new possible ones such as MET, PIM1, and RSBN1L. Enrichment analysis revealed that genes mutated in PCNSL were involved in many pathways and functional protein activities, such as the extracellular matrix and adhesion molecules. The most common genetic alterations in PCNSL were identified using NGS. Mutations in multiple genes highlights the complex molecular heterogeneity of PCNSL. Enrichment analysis revealed possible pathogenesis. Further exploration of new driver genes could provide novel insights into diagnosis and precision medicine for PCNSL.


Subject(s)
Genomics , Lymphoma, Non-Hodgkin , Humans , Brain , Extracellular Matrix , Health Facilities
7.
Curr Res Food Sci ; 7: 100548, 2023.
Article in English | MEDLINE | ID: mdl-37534308

ABSTRACT

In this study, a new method for the detection of ascorbic acid (AA) was proposed. It was based on the protective effect of AA on silver triangular nanoplates (Ag TNPs) against Cl- induced etching reactions. Cl- can attack the corners of Ag TNPs and etch them, causing a morphological shift from triangular nanoplates to nanodiscs. As a result, the solution changes color from blue to yellow. However, in the presence of AA, the corners of Ag TNPs can be protected from Cl- etching, and the blue color of the solution remains unchanged. Using this effect, a selective sensor was designed to detect AA in the range of 0-40.00 µM with a detection limit of 2.17 µM. As the concentration of AA varies in this range, color changes from yellow to blue can be easily observed, so the designed sensor can be used for colorimetric detection. This method can be used to analyze fruit juice samples.

8.
Mol Psychiatry ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37468529

ABSTRACT

Deep brain regions such as hippocampus, insula, and amygdala are involved in neuropsychiatric disorders, including chronic insomnia and depression. Our recent reports showed that transcranial alternating current stimulation (tACS) with a current of 15 mA and a frequency of 77.5 Hz, delivered through a montage of the forehead and both mastoids was safe and effective in intervening chronic insomnia and depression over 8 weeks. However, there is no physical evidence to support whether a large alternating current of 15 mA in tACS can send electrical currents to deep brain tissue in awake humans. Here, we directly recorded local field potentials (LFPs) in the hippocampus, insula and amygdala at different current strengths (1 to 15 mA) in 11 adult patients with drug-resistant epilepsy implanted with stereoelectroencephalography (SEEG) electrodes who received tACS at 77.5 Hz from 1 mA to 15 mA at 77.5 Hz for five minutes at each current for a total of 40 min. For the current of 15 mA at 77.5 Hz, additional 55 min were applied to add up a total of 60 min. Linear regression analysis revealed that the average LFPs for the remaining contacts on both sides of the hippocampus, insula, and amygdala of each patient were statistically associated with the given currents in each patient (p < 0.05-0.01), except for the left insula of one subject (p = 0.053). Alternating currents greater than 7 mA were required to produce significant differences in LFPs in the three brain regions compared to LFPs at 0 mA (p < 0.05). The differences remained significant after adjusting for multiple comparisons (p < 0.05). Our study provides direct evidence that the specific tACS procedures are capable of delivering electrical currents to deep brain tissues, opening a realistic avenue for modulating or treating neuropsychiatric disorders associated with hippocampus, insula, and amygdala.

9.
ACS Macro Lett ; 12(8): 1031-1036, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37433040

ABSTRACT

Protein assembly, a common phenomenon in nature, plays an important role in the evolution of life. Inspired by nature, assembling protein monomers into delicate nanostructures has emerged as an attractive research area. However, sophisticated protein assemblies usually need complicated designs or templates. In this work, we successfully fabricated protein nanotubes in a facile way by coordination interactions between imidazole-grafted horseradish peroxidase (HRP) nanogels (iHNs) and Cu2+. The iHNs were synthesized by polymerization on the surface of HRP by employing vinyl imidazole as a comonomer. By direct addition of Cu2+ into iHN solution, protein tubes were therefore formed. The size of the protein tubes could be adjusted by changing the added Cu2+ amount, and the mechanism behind the formation of protein nanotubes was elucidated. Furthermore, a highly sensitive H2O2 detection system was established based on the protein tubes. This work provides a facile method to construct diverse sophisticated functional protein nanomaterials.


Subject(s)
Hydrogen Peroxide , Nanotubes , Nanogels , Horseradish Peroxidase/chemistry , Hydrogen Peroxide/chemistry , Nanotubes/chemistry , Imidazoles
10.
Front Neurol ; 14: 1176459, 2023.
Article in English | MEDLINE | ID: mdl-37416311

ABSTRACT

Background: Hypothalamic hamartoma (HH) is a rare intracranial disease whose manifestations include gelastic seizures and precocious puberty. The diagnosis and treatment of HH have changed substantially over the past three decades as medical care has improved. Bibliometrics can reveal the evolution and development of a scientific field. Methods: Documents on HH were retrieved from the Web of Science Core Collection (WoSCC) database on September 8, 2022. The search terms were as follows: "hypothalamic hamartoma" or "hamartoma of the hypothalamus" or "hypothalamic hamartomas." The types of documents were restricted to articles, case reports, and reviews. VOSviewer, CiteSpace, and the R package "bibliometrix" were used for a bibliometric analysis. Results: A total of 667 independent documents on HH were obtained from the WoSCC database. The most common types of documents were articles (n = 498, 75%) and reviews (n = 103, 15%). The number of annual publications fluctuated but showed an upward trend overall, and the annual growth rate was 6.85%. The cumulative publication data indicated that the most influential journals in the HH field include Epilepsia, Epileptic Disorders, Child's Nervous System, Neurosurgery, and the Journal of Neurosurgery. Kerrigan JF, Ng YT, Rekate HL, Regis J, and Kameyama S were among the most prominent authors in the field of HH, with numerous publications and citations. American research institutions, especially the Barrow Neurological Institute, occupied a pivotal position in HH research. Other countries and institutions were catching up and producing considerable research results. Research on HH has steadily switched its emphasis from Pallister-Hall syndrome (PHS) and precocious puberty to epilepsy and new diagnostic and therapeutic techniques, including Gamma Knife, laser ablation, and interstitial thermal therapy. Conclusion: HH remains a special neurological disease with significant research prospects. The development of novel technologies, including MRI-guided laser-induced thermal therapy (MRg-LiTT) and stereotactic radiofrequency thermocoagulation (RF-TC), has enabled the efficient treatment of gelastic seizures in HH while minimizing the risks associated with craniotomies. Through bibliometric analysis, this study points out the direction for future HH research.

11.
Front Bioeng Biotechnol ; 11: 1194398, 2023.
Article in English | MEDLINE | ID: mdl-37288357

ABSTRACT

Introduction: Diabetic oral mucosa ulcers face challenges of hypoxia, hyperglycemia and high oxidative stress, which result in delayed healing process. Oxygen is regarded as an important substance in cell proliferation, differentiation and migration, which is beneficial to ulcer recovery. Methods: This study developed a multi-functional GOx-CAT nanogel (GCN) system for the treatment of diabetic oral mucosa ulcers. The catalytic activity, ROS scavenge and oxygen supply ability of GCN was validated. The therapeutic effect of GCN was verified in the diabetic gingival ulcer model. Results: The results showed that the nanoscale GCN was capable of significantly eliminating intracellular ROS, increasing intracellular oxygen concentration and accelerating cell migration of human gingival fibroblasts, which could promote diabetic oral gingival ulcer healing in vivo by alleviating inflammation and promoting angiogenesis. Discussion: This multifunctional GCN with ROS depletion, continuous oxygen supply and good biocompatibility, which might provide a novel therapeutic strategy for effective treatment of diabetic oral mucosa ulcers.

12.
Nanotechnology ; 34(33)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37192605

ABSTRACT

The temperature-dependent external quantum efficiency (EQE) droops of 265 nm, 275 nm, 280 nm, and 285 nm AlGaN-based ultraviolet-c light-emitting diodes (UVC-LEDs) differed in Al contents have been comprehensively investigated. The modifiedABCmodel (R = An+Bn2+Cn3) with the current-leakage related term,f(n)= Dn4, has been employed to analyze the recombination mechanisms in these UVC-LED samples. Experimental results reveal that, at relatively low electrical-current levels, the contribution of Shockley-Read-Hall (SRH) recombination exceeds those of the Auger recombination and carrier leakage. At relatively high electrical-current levels, the Auger recombination and carrier leakage jointly dominate the EQE droop phenomenon. Moreover, the inactivation efficiencies of 222 nm excimer lamp, 254 nm portable Mercury lamp, 265 nm, 280 nm, and 285 nm UVC-LED arrays in the inactivation ofEscherichia colihave been experimentally investigated, which could provide a technical reference for fighting against the new COVID-19.

13.
Hum Brain Mapp ; 44(9): 3610-3623, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37073861

ABSTRACT

Substantial studies of human amygdala function have revealed its importance in processing emotional experience, autonomic regulation, and sensory information; however, the neural substrates and circuitry subserving functions have not been directly mapped at the level of the subnuclei in humans. We provide a useful overview of amygdala functional characterization by using direct electrical stimulation to various amygdala regions in 48 patients with drug-resistant epilepsy undergoing stereoelectroencephalography recordings. This stimulation extends beyond the anticipated emotional, neurovegetative, olfactory, and somatosensory responses to include visual, auditory, and vestibular sensations, which may be explained by the functional connectivity with cortical and subcortical regions due to evoked amygdala-cortical potentials. Among the physiological symptom categories for each subnucleus, the most frequently evoked neurovegetative symptoms were distributed in almost every subnucleus. Laterobasal subnuclei are mainly associated with emotional responses, somatosensory responses, and vestibular sensations. Superficial subnuclei are mainly associated with emotional responses and olfactory and visual hallucinations. Our findings contribute to a better understanding of the functional architecture of the human amygdala at the subnuclei level and as a mechanistic basis for the clinical practice of amygdala stimulation in treating patients with neuropsychiatric disorders.


Subject(s)
Amygdala , Evoked Potentials , Humans , Amygdala/diagnostic imaging , Amygdala/physiology , Evoked Potentials/physiology , Electric Stimulation , Stereotaxic Techniques , Electroencephalography
14.
Adv Mater ; 35(30): e2300834, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37080636

ABSTRACT

Lead halide perovskite quantum dots (PQDs) are making their way toward next-generation display applications, such as serving as color conversion layers in micro-light-emitting-diode (micro-LED) arrays. Red PQDs containing iodine exhibit weaker brightness compared with their green counterpart when employed as color conversion layers. Therefore, PQDs with enhanced brightness are highly favorable for micro/mini-LED displays. A universal strategy of bicomponent perovskite nanocomposite (BPNC) with significantly enhanced photoluminescence (PL) intensity is proposed through the built-in Förster resonance energy transfer (FRET) from the core CsPbBr3 to the shell γ-CsPbI3 , and it is confirmed that it is through a pair of combined quasi-degenerate energy levels in the blue spectra region that the FRET is conducted, resulting in a high excitation wavelength selectivity. Owing to the highly efficient energy transition route from blue excitation to red emission established by the FRET, the BPNC exhibits the brightest single-peak red photoluminescence with near 100% quantum yield. The BPNC with FRET is further proven to be adaptable to a wide range of emission wavelengths. The BPNCs in a blue micro-LED array are employed as color downconversion layers, and excellent color conversion properties and high color gamut are demonstrated. This strategy of BPNC paves a road to the full-color micro-LED displays.

15.
Chem Soc Rev ; 52(7): 2497-2527, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36928878

ABSTRACT

Ionic liquid (IL)-based gels (ionogels) have received considerable attention due to their unique advantages in ionic conductivity and their biphasic liquid-solid phase property. In ionogels, the negligibly volatile ionic liquid is retained in the interconnected 3D pore structure. On the basis of these physical features as well as the chemical properties of well-chosen ILs, there is emerging interest in the anti-bacterial and biocompatibility aspects. In this review, the recent achievements of ionogels for biomedical applications are summarized and discussed. Following a brief introduction of the various types of ILs and their key physicochemical and biological properties, the design strategies and fabrication methods of ionogels are presented by means of different confining networks. These sophisticated ionogels with diverse functions, aimed at biomedical applications, are further classified into several active domains, including wearable strain sensors, therapeutic delivery systems, wound healing and biochemical detections. Finally, the challenges and possible strategies for the design of future ionogels by integrating materials science with a biological interface are proposed.


Subject(s)
Ionic Liquids , Electric Conductivity , Materials Science
17.
Surg Endosc ; 37(6): 4421-4430, 2023 06.
Article in English | MEDLINE | ID: mdl-36781469

ABSTRACT

BACKGROUND AND AIMS: Chromoendoscopy with Lugol's staining is used to screen for early esophageal squamous cell carcinoma (ESCC). Its efficacy is greatly limited by unstandardized defoaming preparation. This study aimed to confirm whether pre-procedure oral administration of pronase could improve the diagnostic performance of Lugol chromoendoscopy in high-risk patients being screened for early ESCC. METHODS: A total of 955 patients at-risk were prospectively recruited for screening for ESCC. Patients were randomly assigned (1:1) to groups with or without (control group) pronase administration. Endoscopic diagnosis of early ESCC was based on the presence of pink-color sign in Lugol's unstained area, and a biopsy was routinely conducted if the Lugol's unstained lesion was larger than 0.5 cm. The early cancer detection rate was used as the primary endpoint. RESULTS: Pre-procedure oral administration of pronase improved mucosal visibility during Lugol chromoendoscopy (P = 0.008). There were no differences in the number of Lugol's unstained lesions between the 2 groups (23.27% [111/477] vs. 25.11% [120/478], P = 0.508). Meaningfully, the detection rate of ESCC (confirmed by histopathology) was significantly higher in the pronase group than in the control group (27.03% [30/111] vs. 17.50% [21/120], P = 0.041), as well as the detection rate of lesions with pink-color sign during chromoendoscopy (35.14% [39/111] vs. 13.33% [16/120], P < 0.001). The diagnostic performance of Lugol chromoendoscopy had improved with the use of pronase (area under the curve = 0.85 vs. 0.69, P = 0.019), accompanied by an increased sensitivity (86.67% vs. 47.62%, P = 0.004). There was no difference in the adverse events between the 2 groups (P = 0.793). CONCLUSIONS: Pre-procedure oral administration of pronase significantly increased the detection rate of early ESCC and optimized the diagnostic performance of Lugol chromoendoscopy, which should be recommended during routine endoscopic screening for early ESCC in high-risk patients. TRIAL REGISTRATION: Pronase improves efficacy of Lugol chromoendoscopy screening on esophageal cancerous lesions (NCT02030769).


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/pathology , Pronase , Esophagoscopy/methods , Prospective Studies , Coloring Agents
18.
ACS Nano ; 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36596227

ABSTRACT

Hydrogen, a simple and magic element, has attracted increasing attention for its effective incorporation within solids and powerful manipulation of electronic states. Here, we show that hydrogenation tackles common problems in two-dimensional borophene, e.g., stability and applicability. As a prominent example, a ladder-like boron hydride sheet, named as 2D ladder polyborane, achieves the desired outcome, enjoying the cleanest scenario with an anisotropic and tilted Dirac cone, that can be fully depicted by a minimal two-band tight-binding model. Introducing external fields, such as an electric field or a circularly polarized light field, can effectively induce distinctive massive Dirac fermions, whereupon four types of multi-field-driven topological domain walls hosting tunable chirality and valley indexes are further established. Moreover, the 2D ladder polyborane is thermodynamically stable at room temperature and supports highly switchable Dirac fermions, providing an ideal platform for realizing and exploring the various multi-field-tunable electronic states.

19.
Epilepsy Behav ; 138: 109003, 2023 01.
Article in English | MEDLINE | ID: mdl-36470059

ABSTRACT

OBJECTIVE: We investigated the network between the medial temporal lobe (MTL) and extratemporal structures in patients with mesial temporal lobe epilepsy (MTLE) in order to explain the recurrence of MTLE after surgery. This study contributes to our current understanding of MTLE with stereotactic electroencephalography (SEEG). METHODS: We conducted a retrospective study of SEEG in 20 patients with MTLE in order to observe and analyze the intensity of interictal high-frequency oscillations (HFOs), as well as the dynamic course of coherence connectivity values of the MTL and extratemporal structures during the initial phase of the seizure. The results correlated with the patient prognosis. RESULTS: First, the presence of HFOs was observed during the interictal period in all 20 patients; these were localized to the MTL in 17 patients and the orbitofrontal cortex in seven patients and the insula in six patients. The better the prognosis, the greater the localization of the HFOs concentration in the MTL structures (p < 0.05). Second, significantly enhanced connectivity of MTL structures with the orbitofrontal cortex and insula was observed in most patients with MTLE, before and after the seizure onset (p < 0.05). Finally, the connectivity between extratemporal structures, such as the orbitofrontal cortex and insula, and MTL structures was significantly stronger in patients who had a worse prognosis than in other patients, before and after seizure onset (p < 0.05). INTERPRETATION: The epileptogenic network in recurrent MTLE is not limited to MTL structures but is also associated with the orbitofrontal cortex and insula. This can be used as a potential indicator for predicting the prognosis of patients after surgery, providing an important avenue for future clinical evaluation.


Subject(s)
Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Retrospective Studies , Seizures , Electroencephalography/methods , Prognosis , Prefrontal Cortex , Magnetic Resonance Imaging , Hippocampus
20.
Angew Chem Int Ed Engl ; 62(2): e202215342, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36404275

ABSTRACT

Supercapacitor represents an important electrical energy storage technology with high-power performance and superior cyclability. However, currently commercialized supercapacitors still suffer limited energy densities. Here we report an unprecedentedly respiring supercapacitor with chlorine gas iteratively re-inspires in porous carbon materials, that improves the energy density by orders of magnitude. Both electrochemical results and theoretical calculations show that porous carbon with pore size around 3 nm delivers the best chlorine evolution and adsorption performance. The respiring supercapacitor with multi-wall carbon nanotube as the cathode and NaTi2 (PO4 )3 as the anode can store specific energy of 33 Wh kg-1 with negligible capacity loss over 30 000 cycles. The energy density can be further improved to 53 Wh kg-1 by replacing NaTi2 (PO4 )3 with zinc anode. Furthermore, thanks to the extraordinary reaction kinetics of chlorine gas, this respiring supercapacitor performs an extremely high-power density of 50 000 W kg-1 .

SELECTION OF CITATIONS
SEARCH DETAIL
...