Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Musculoskelet Disord ; 23(1): 1067, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36471305

ABSTRACT

BACKGROUND: Accurate puncture and localization are critical for percutaneous transforaminal endoscopic lumbar discectomy surgery. However, several punctures are often required, followed by X-ray fluoroscopy, which can increase surgical risk and complications. The aim of this study was to demonstrate a new body surface-assisting puncture device that can be used in percutaneous transforaminal endoscopic lumbar discectomy and to assess its clinical effectiveness. METHODS: Three hundred and forty-four patients were treated with percutaneous transforaminal endoscopic lumbar discectomy surgery in the Spinal Surgery Department of Taian City Central Hospital, China, between January 2020 and February 2022. Of these, 162 patients (the locator group) were punctured using a body surface-assisting puncture device while and 182 patients (the control group) were punctured using the traditional blind puncture method. The number of punctures, radiation dose during X-ray fluoroscopy, operation time, and surgical complications were compared between the two groups. RESULTS: The average number of punctures was 2.15 ± 1.10 in the locator group which was significantly lower than that in the control group (5.30 ± 1.74; P < 0.001). The average X-ray fluoroscopy radiation dose in the locator group was significantly lower at 2.34 ± 0.99 mGy, compared with 5.13 ± 1.29 mGy in the control group (P < 0.001). The mean operation time was also significantly less in locator group (47.06 ± 5.12 vs. 62.47 ± 5.44 min; P = 0.008). No significant differences in surgical complications were found between the two groups (P > 0.05). CONCLUSION: The use of a new body surface-assisting puncture device in percutaneous transforaminal endoscopic lumbar discectomy surgery can significantly reduce the number of punctures and X-ray fluoroscopy radiation dose, as well as shortening the operation time, without increasing surgical complications. This device is cheap, easy to operate, and suitable for all hospitals and spine surgeons, especially for small hospitals, with also no extra costs for patients.


Subject(s)
Diskectomy, Percutaneous , Intervertebral Disc Displacement , Humans , Intervertebral Disc Displacement/diagnostic imaging , Intervertebral Disc Displacement/surgery , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Spinal Puncture , Diskectomy, Percutaneous/adverse effects , Diskectomy, Percutaneous/methods , Diskectomy/adverse effects , Diskectomy/methods , Endoscopy/adverse effects , Endoscopy/methods , Treatment Outcome , Retrospective Studies
2.
Orthop Surg ; 14(12): 3150-3158, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36222216

ABSTRACT

OBJECTIVE: To summarize the variation types of the axis in patients with basilar invagination (BI), then propose a classification scheme of the axis deformity. METHODS: From December 2013 to September 2020, 92 patients (male 42, female 50) who were diagnosed with BI were studied retrospectively. Based on the imaging data of CT, the width and height of the axis pedicle and the sagittal diameter of the lateral mass were measured in each patient. According to the development of axis pedicle and lateral mass, the types of axis variation were summarized, and then the classification scheme of axis deformity was put forward. RESULTS: All cases were analyzed and axis deformities were divided into four types. Type I: the axis is basically normal (53 cases, 57.6%). Type II: axis lateral mass is dysplasia (eight cases, 8.7%), which includes two subtypes: type IIA, the axis unilateral lateral mass is dysplasia (three cases); type IIB, the axis bilateral lateral masses are all dysplasia (five cases). Type III: axis pedicle is dysplasia (11 cases, 12%), which is subdivided into two subtypes: type IIIA, the axis unilateral pedicle is dysplasia (six cases); type IIIB, the axis bilateral pedicles are all dysplasia (five cases). Type IV: axis pedicle and lateral mass are all dysplasia (20 cases, 21.7%), this type contains the following four subtypes: type IVA, the unilateral axis pedicle and unilateral lateral mass (contralateral or ipsilateral) are all hypoplasia (four cases); type IVB, the unilateral axis pedicle and bilateral lateral masses are all hypoplasia (five cases); type IVC, the bilateral axis pedicles and unilateral lateral mass are all dysplasia (seven cases); type IVD, the bilateral axis pedicles and bilateral lateral masses are all dysplasia (four cases). The left and right abnormal lateral mass sagittal diameter (Type II) was (7.23 ± 1.39) mm and (5.96 ± 1.37) mm, respectively, the left and right abnormal pedicle width (Type III) was (2.61 ± 1.01) mm and (3.23 ± 0.66) mm, respectively, left and right abnormal pedicle height (Type III) was (5.43 ± 2.19) mm and (4.92 ± 1.76) mm, respectively. Moreover, the classification scheme has good repeatability and credibility. CONCLUSIONS: The classification about axis deformity could provide personalized guidance for axis screw placement in the BI and other upper cervical surgery, and axis screw placement errors would be effectively avoided.


Subject(s)
Brain , Female , Humans , Male , Retrospective Studies
3.
Materials (Basel) ; 15(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36234325

ABSTRACT

Research on regulation of the immune microenvironment based on bioactive materials is important to osteogenic regeneration. Hydroxyapatite (HAP) is believed to be a promising scaffold material for dental and orthopedic implantation due to its ideal biocompatibility and high osteoconductivity. However, any severe inflammation response can lead to loosening and fall of implantation, which cause implant failures in the clinic. Morphology modification has been widely studied to regulate the host immune environment and to further promote bone regeneration. Here, we report the preparation of nHAPs, which have uniform rod-like shape and different size (200 nm and 400 nm in length). The morphology, biocompatibility, and anti-inflammatory properties were evaluated. The results showed that the 400 nm nHAPs exhibited excellent biocompatibility and osteoimmunomodulation, which can not only induce M2-phenotype macrophages (M2) polarization to decrease the production of inflammatory cytokines, but also promote the production of osteogenic factor. The reported 400 nm nHAPs are promising for osteoimmunomodulation in bone regeneration, which is beneficial for clinical application of bone defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...