Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 971690, 2022.
Article in English | MEDLINE | ID: mdl-36438108

ABSTRACT

Plants exhibit plasticity in response to various external conditions, characterized by changes in physiological and morphological features. Although being non-negligible, compared to the other environmental factors, the effect of wind on plant growth is less extensively studied, either experimentally or computationally. This study aims to propose a modeling approach that can simulate the impact of wind on plant growth, which brings a biomechanical feedback to growth and biomass distribution into a functional-structural plant model (FSPM). Tree reaction to the wind is simulated based on the hypothesis that plants tend to fit in the environment best. This is interpreted as an optimization problem of finding the best growth-regulation sink parameter giving the maximal plant fitness (usually seed weight, but expressed as plant biomass and size). To test this hypothesis in silico, a functional-structural plant model, which simulates both the primary and secondary growth of stems, is coupled with a biomechanical model which computes forces, moments of forces, and breakage location in stems caused by both wind and self-weight increment during plant growth. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is adopted to maximize the multi-objective function (stem biomass and tree height) by determining the key parameter value controlling the biomass allocation to the secondary growth. The digital trees show considerable phenotypic plasticity under different wind speeds, whose behavior, as an emergent property, is in accordance with experimental results from works of literature: the height and leaf area of individual trees decreased with wind speed, and the diameter at the breast height (DBH) increased at low-speed wind but declined at higher-speed wind. Stronger wind results in a smaller tree. Such response of trees to the wind is realistically simulated, giving a deeper understanding of tree behavior. The result shows that the challenging task of modeling plant plasticity may be solved by optimizing the plant fitness function. Adding a biomechanical model enriches FSPMs and opens a wider application of plant models.

2.
IEEE Trans Cybern ; 48(12): 3371-3380, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30130242

ABSTRACT

The profit of greenhouse production is influenced by management activities (e.g., environmental control and plantation scheduling) as well as social conditions (e.g., price fluctuation). In China, the prevailing horticultural facility is the traditional solar greenhouse. The key existing problem is the lack of knowledge of growers, which in turn leads to inefficient management, low production, or unsalable products. To secure effective greenhouse management, the production planning system must account for the crop growing environment, grower's activities, and the market. This paper presents an agricultural cyber-physical-social system (CPSS) serving agricultural production management, with a case study on the solar greenhouse. The system inputs are derived from social and physical sensors, with the former collecting the price of agricultural products in a wholesale market, and the latter collecting the necessary environmental data in the solar greenhouse. Decision support for the cropping plan is provided by the artificial system, computational experiment, and parallel execution-based method, with description intelligence for estimating the crop development and harvest time, prediction intelligence for optimizing the planting time and area according to the expected targets (stable production or maximum gross profit), and prescription intelligence for online system training. The presented system fits the current technical and economic situation of horticulture in China. The application of agricultural CPSS could decrease waste in labor or fertilizer and support sustainable agricultural production.

SELECTION OF CITATIONS
SEARCH DETAIL
...