Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Biosci Rep ; 43(10)2023 10 31.
Article in English | MEDLINE | ID: mdl-37795866

ABSTRACT

Pulmonary disease can refer to the disease of the lung itself or the pulmonary manifestations of systemic diseases, which are often connected to the malfunction of the immune system. Regulatory T (Treg) cells have been shown to be important in maintaining immune homeostasis and preventing inflammatory damage, including lung diseases. Given the increasing amount of evidence linking Treg cells to various pulmonary conditions, Treg cells might serve as a therapeutic strategy for the treatment of lung diseases and potentially promote lung transplant tolerance. The most potent and well-defined Treg cells are Foxp3-expressing CD4+ Treg cells, which contribute to the prevention of autoimmune lung diseases and the promotion of lung transplant rejection. The protective mechanisms of Treg cells in lung disease and transplantation involve multiple immune suppression mechanisms. This review summarizes the development, phenotype and function of CD4+Foxp3+ Treg cells. Then, we focus on the therapeutic potential of Treg cells in preventing lung disease and limiting lung transplant rejection. Furthermore, we discussed the possibility of Treg cell utilization in clinical applications. This will provide an overview of current research advances in Treg cells and their relevant application in clinics.


Subject(s)
Lung Diseases , T-Lymphocytes, Regulatory , Humans , CD4-Positive T-Lymphocytes , Immune Tolerance , Forkhead Transcription Factors/genetics
2.
Cell Transplant ; 32: 9636897231184611, 2023.
Article in English | MEDLINE | ID: mdl-37395459

ABSTRACT

The 2019 novel coronavirus disease (COVID-19) has lasted for over 3 years and has seriously affected the regular life trajectory of human beings. The severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) has caused non-negligible harm to people's respiratory systems and multiple organs. Although the pathogenesis of COVID-19 has been fully elucidated, there is still a lack of effective and specific treatment for COVID-19. Mesenchymal stem cells (MSCs) or MSC-derived extracellular vesicles (MSC-EVs) by far have become the most promising candidates in preclinical studies and clinical trials, and MSC-related therapies have shown their potential to treat severe COVID-19. The multidirectional differentiation potential and immunomodulatory function of MSCs have allowed the cells to exert multiple cellular and molecular actions on different immune cells and organs. It is critical to understand the therapeutic roles of MSCs before entering the clinics for COVID-19 and other diseases. This review summarizes the recent progress of particular mechanisms underlying the immunomodulatory and tissue regenerative effects of MSCs toward COVID-19. We focused on discussing the functional roles of MSC-mediated effects on immune cell responses, cell survival, and organ regeneration. Besides, the novel discoveries and recent findings of MSC clinical application in patients with COVID-19 were highlighted. This will provide an overview of the current research on the rapid development of MSC-based therapies not only for COVID-19 but also for other immune-mediated/immune-dysregulating diseases.


Subject(s)
COVID-19 , Extracellular Vesicles , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , COVID-19 Drug Treatment , COVID-19/therapy , SARS-CoV-2 , Cell Differentiation
3.
J Cancer ; 14(4): 505-518, 2023.
Article in English | MEDLINE | ID: mdl-37057280

ABSTRACT

Context: Duchesnea indica is effective against hepatocellular carcinoma (HCC); however, its underlying mechanism of action remains unclear. Objective: The present study aimed to investigate the potential mechanism of action and effects of D. indica components against HCC. Materials and methods: First, the effects of D. indica against HCC were investigated in vitro and in vivo. For in vitro experiments, HCC cell lines were treated with D. indica solutions at different concentrations (0, 1, 2 mg/mL) and then assessed for cell apoptosis, proliferation, migration, invasion, and angiogenic ability. For in vivo experiments, 24 mice were randomly divided into the following four groups: model group and D. indica low-, medium-, and high-dose groups. Tumor growth and CD34 and Ki67 expression levels were assessed to determine the effects of D. indica on cell proliferation and angiogenic ability. Furthermore, transcriptome sequencing and differential expression analyses were used to identify D. indica-induced differentially expressed genes (DEGs) in HCC cells. Additionally, mass spectrometry was conducted to identify the chemical components of D. indica. Four databases were used to predict the target proteins of these chemical components in HCC. HCC-associated genes were identified from two databases. By intersecting the identified DEGs; target proteins; and HCC-associated genes, key D. indica-regulated HCC-related genes were identified. Subsequently, protein-protein interaction network, network pharmacology, and molecular docking were used to identify the active compounds in D. indica and their likely gene targets. Results: In vitro experiments demonstrated that D. indica induced tumor cell apoptosis and inhibited cell proliferation, migration, invasion, and angiogenic potential. In vivo experiments demonstrated that D. indica inhibited tumor growth in a dose-dependent manner. Bioinformatic analyses identified 49 key D. indica-regulated HCC-related genes, of which FOS, SERPINE1, AKR1C3, and FGF2 were the most significant. Mass spectrometry identified the following five molecules in D. indica with potential anti-HCC activity: 4', 5, 7-trihydroxyflavone; ethyl protocatechuate; 3, 5-dihydroxy-benzoic acid; curculigosaponin A; and curculigine G. Molecular docking validated the interaction between D. indica active compounds and their target proteins in HCC. Conclusions: The present study confirmed the therapeutic effects of D. indica against HCC and identified the key genes and active components that may contribute to its mechanism of action, thereby providing a basis for further research on targeted therapeutics for HCC.

4.
Virol Sin ; 37(5): 724-730, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35926726

ABSTRACT

A randomized, double-blind, placebo-controlled multicenter trial was conducted in healthy Chinese infants to assess the efficacy and safety of a hexavalent live human-bovine reassortant rotavirus vaccine (HRV) against rotavirus gastroenteritis (RVGE). A total of 6400 participants aged 6-12 weeks were enrolled and randomly assigned to either HRV (n â€‹= â€‹3200) or placebo (n â€‹= â€‹3200) group. All the subjects received three oral doses of vaccine four weeks apart. The vaccine efficacy (VE) against RVGE caused by rotavirus serotypes contained in HRV was evaluated from 14 days after three doses of administration up until the end of the second rotavirus season. VE against severe RVGE, VE against RVGE hospitalization caused by serotypes contained in HRV, and VE against RVGE, severe RVGE, and RVGE hospitalization caused by natural infection of any serotype of rotavirus were also investigated. All adverse events (AEs) were collected for 30 days after each dose. Serious AEs (SAEs) and intussusception cases were collected during the entire study. Our data showed that VE against RVGE caused by serotypes contained in HRV was 69.21% (95%CI: 53.31-79.69). VE against severe RVGE and RVGE hospitalization caused by serotypes contained in HRV were 91.36% (95%CI: 78.45-96.53) and 89.21% (95%CI: 64.51-96.72) respectively. VE against RVGE, severe RVGE, and RVGE hospitalization caused by natural infection of any serotype of rotavirus were 62.88% (95%CI: 49.11-72.92), 85.51% (95%CI: 72.74-92.30) and 83.68% (95%CI: 61.34-93.11). Incidences of AEs from the first dose to one month post the third dose in HRV and placebo groups were comparable. There was no significant difference in incidences of SAEs in HRV and placebo groups. This study shows that this hexavalent reassortant rotavirus vaccine is an effective, well-tolerated, and safe vaccine for Chinese infants.


Subject(s)
Enterovirus Infections , Gastroenteritis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Administration, Oral , Animals , Cattle , China , Gastroenteritis/epidemiology , Humans , Infant , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , Rotavirus Vaccines/adverse effects , Vaccination , Vaccines, Attenuated , Vaccines, Combined
5.
Stem Cells ; 39(7): 975-987, 2021 07.
Article in English | MEDLINE | ID: mdl-33662168

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are recognized as key controllers and effectors of type 2 inflammation. Mesenchymal stem cells (MSCs) have been shown to alleviate type 2 inflammation by modulating T lymphocyte subsets and decreasing TH 2 cytokine levels. However, the effects of MSCs on ILC2s have not been investigated. In this study, we investigated the potential immunomodulatory effects of MSCs on ILC2s in peripheral blood mononuclear cells (PBMCs) from allergic rhinitis patients and healthy subjects. We further investigated the mechanisms involved in the MSC modulation using isolated lineage negative (Lin- ) cells. PBMCs and Lin- cells were cocultured with induced pluripotent stem cell-derived MSCs (iPSC-MSCs) under the stimulation of epithelial cytokines IL-25 and IL-33. And the ILC2 levels and functions were examined and the possible mechanisms were investigated based on regulatory T (Treg) cells and ICOS-ICOSL pathway. iPSC-MSCs successfully decreased the high levels of IL-13, IL-9, and IL-5 in PBMCs in response to IL-25, IL-33, and the high percentages of IL-13+ ILC2s and IL-9+ ILC2s in response to epithelial cytokines were significantly reversed after the treatment of iPSC-MSCs. However, iPSC-MSCs were found directly to enhance ILC2 levels and functions via ICOS-ICOSL interaction in Lin- cells and pure ILC2s. iPSC-MSCs exerted their inhibitory effects on ILC2s via activating Treg cells through ICOS-ICOSL interaction. The MSC-induced Treg cells then suppressed ILC2s by secreting IL-10 in the coculture system. This study revealed that human MSCs suppressed ILC2s via Treg cells through ICOS-ICOSL interaction, which provides further insight to regulate ILC2s in inflammatory disorders.


Subject(s)
Mesenchymal Stem Cells , T-Lymphocytes, Regulatory , Cytokines/metabolism , Humans , Immunity, Innate , Inducible T-Cell Co-Stimulator Ligand/metabolism , Inducible T-Cell Co-Stimulator Protein/metabolism , Leukocytes, Mononuclear , Lymphocytes , Mesenchymal Stem Cells/metabolism , T-Lymphocytes, Regulatory/metabolism
6.
Cell Death Dis ; 11(6): 409, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483121

ABSTRACT

Allergic airway inflammation is a major public health disease that affects up to 300 million people in the world. However, its management remains largely unsatisfactory. The dysfunction of pulmonary macrophages contributes greatly to the development of allergic airway inflammation. It has been reported that small extracellular vesicles derived from mesenchymal stromal cells (MSC-sEV) were able to display extensive therapeutic effects in some immune diseases. This study aimed to investigate the effects of MSC-sEV on allergic airway inflammation, and the role of macrophages involved in it. We successfully isolated MSC-sEV by using anion exchange chromatography, which were morphologically intact and positive for the specific EV markers. MSC-sEV significantly reduced infiltration of inflammatory cells and number of epithelial goblet cells in lung tissues of mice with allergic airway inflammation. Levels of inflammatory cells and cytokines in bronchoalveolar lavage fluid were also significantly decreased. Importantly, levels of monocytes-derived alveolar macrophages and M2 macrophages were significantly reduced by MSC-sEV. MSC-sEV were excreted through spleen and liver at 24 h post-administration in mice, and were able to be taken in by macrophages both in vivo and in vitro. In addition, proteomics analysis of MSC-sEV revealed that the indicated three types of MSC-sEV contained different quantities of proteins and shared 312 common proteins, which may be involved in the therapeutic effects of MSC-sEV. In total, our study demonstrated that MSC-sEV isolated by anion exchange chromatography were able to ameliorate Th2-dominant allergic airway inflammation through immunoregulation on pulmonary macrophages, suggesting that MSC-sEV were promising alternative therapy for allergic airway inflammation in the future.


Subject(s)
Extracellular Vesicles/metabolism , Hypersensitivity/immunology , Hypersensitivity/pathology , Immunomodulation , Inflammation/pathology , Lung/pathology , Macrophages/pathology , Mesenchymal Stem Cells/metabolism , Animals , Cell Differentiation , Cell Polarity , Extracellular Vesicles/ultrastructure , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Inflammation/immunology , Lung/immunology , Macrophages/metabolism , Mice, Inbred BALB C , Models, Biological , Proteome/metabolism
7.
J Extracell Vesicles ; 9(1): 1723260, 2020.
Article in English | MEDLINE | ID: mdl-32128074

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are recently reported to play a more critical role in allergic diseases. We previously identified that mesenchymal stromal cells (MSCs) elicited therapeutic effects on allergic airway inflammation. Small extracellular vesicles (sEV) derived from MSCs possess striking advantages including low immunogenicity and high biosafety, and is extremely promising cell-free therapeutic agents. However, the effects of MSC-sEV on ILC2s are still unclear. Additionally, scalable isolation protocols are required for the mass production of homogenous MSC-sEV especially in clinical application. We previously reported that induced pluripotent stem cells-derived MSCs were the ideal cellular source for the large preparation of MSC-sEV. Here we developed a standardized scalable protocol of anion-exchange chromatography for isolation of MSC-sEV, and investigated the effects of MSC-sEV on ILC2 function from patients with allergic rhinitis and in a mouse ILC2-dominant asthma model. The characterization of MSC-sEV was successfully demonstrated in terms of size, morphology and specific markers. Using flow cytometry and human Cytokine Antibody Array, MSC-sEV but not fibroblasts-sEV (Fb-sEV) were found to significantly inhibit the function of human ILC2s. Similarly, systemic administration of MSC-sEV but not Fb-sEV exhibited an inhibition of ILC2 levels, inflammatory cell infiltration and mucus production in the lung, a reduction in levels of T helper 2 cytokines, and alleviation of airway hyperresponsiveness in a mouse model of asthma. Using RNA sequencing, miR-146a-5p was selected as the candidate to mediate the above effects of MSC-sEV. We next revealed the uptake of ILC2s to MSC-sEV, and that transfer of miR-146a-5p in MSC-sEV to ILC2s in part contributed to the effects of MSC-sEV on ILC2s in vitro and in a mouse model. In conclusion, we demonstrated that MSC-sEV were able to prevent ILC2-dominant allergic airway inflammation at least partially through miR-146a-5p, suggesting that MSC-sEV could be a novel cell-free strategy for the treatment of allergic diseases.

8.
Cell Mol Life Sci ; 77(14): 2771-2794, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31965214

ABSTRACT

Mesenchymal stem cells (MSCs) have been extensively investigated for the treatment of various diseases. The therapeutic potential of MSCs is attributed to complex cellular and molecular mechanisms of action including differentiation into multiple cell lineages and regulation of immune responses via immunomodulation. The plasticity of MSCs in immunomodulation allow these cells to exert different immune effects depending on different diseases. Understanding the biology of MSCs and their role in treatment is critical to determine their potential for various therapeutic applications and for the development of MSC-based regenerative medicine. This review summarizes the recent progress of particular mechanisms underlying the tissue regenerative properties and immunomodulatory effects of MSCs. We focused on discussing the functional roles of paracrine activities, direct cell-cell contact, mitochondrial transfer, and extracellular vesicles related to MSC-mediated effects on immune cell responses, cell survival, and regeneration. This will provide an overview of the current research on the rapid development of MSC-based therapies.


Subject(s)
Mesenchymal Stem Cell Transplantation/trends , Mesenchymal Stem Cells , Regenerative Medicine/trends , Cell Differentiation/genetics , Cell Survival/genetics , Humans , Immunomodulation/genetics , Regeneration/genetics
10.
Mol Immunol ; 109: 51-57, 2019 05.
Article in English | MEDLINE | ID: mdl-30852246

ABSTRACT

BACKGROUND: Asthma is a chronic disease involving inflamed airways, which were previously demonstrated, can be modulated by the mesenchymal stem cells derived from induced pluripotent stem cells (iPSC-MSCs). However, the long-term effects of iPSC-MSCs in inflamed airways are still unidentified. This study investigated the long-term effects and potential mechanisms involved in the immunomodulatory effects of iPSC-MSCs in the chronic mouse asthma model. METHODS: Both human iPSC-MSCs and bone marrow (BM)-MSCs were transplanted into the long-term ovalbumin-induced mice before sensitization phase or during the challenge phase. Airway hyper-respnsiveness measurement, immunohistochemistry and ELISA were employed to assess the effects of MSCs. In addition, Smad2/3 levels were assessed by western blot analysis to investigate the possible mechanism involved. RESULTS: The systemic administration of human iPSC-MSCs before the challenge protected the mice from the characters of the chronic allergic airway inflammation, in particular improving the airway remodeling and preventing fibrosis. In addition, the TGF-ß1/Smad pathway was identified involved in the immunomodulatory effects of iPSC-MSCs on chronic allergic airway inflammation. CONCLUSIONS: The study demonstrated that iPSC-MSCs are capable of preventing chronic allergic airway inflammation over a prolonged period, which further proved the iPSC-MSC therapeutic potential for allergic airway inflammation in a clinical scenario.


Subject(s)
Hypersensitivity/therapy , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Pneumonia/therapy , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Bronchoalveolar Lavage Fluid , Chronic Disease , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Hypersensitivity/complications , Hypersensitivity/pathology , Mice, Inbred BALB C , Ovalbumin , Pneumonia/complications , Pneumonia/pathology , Signal Transduction
11.
DNA Cell Biol ; 38(4): 286-296, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30762425

ABSTRACT

Abnormal expression of O-Linked ß-N-acetylglucosamine (O-GlcNAc) and ß-catenin is a general feature of cancer and contributes to transformed phenotypes. In this study, we identified the interaction between O-GlcNAc and ß-catenin, and explored their effects on the progression of liver cancer. Our results demonstrated that upregulation of O-GlcNAc was induced by high glucose, whereas the application of PuGNAc and GlcNAc increased ß-catenin protein expression levels, as well as the protein's stability and nuclear accumulation in the liver cancer cell lines HEP-G2 and HuH-7. In addition, overexpression of ß-catenin could increase O-GlcNAc expression levels through upregulation of uridine 5'-diphosphate (UDP)-N-acetylglucosamine pyrophosphorylase 1 (UAP1) protein expression, protein stability, and inhibition of its ubiquitination. Moreover, the O-GlcNAcylation of ß-catenin promoted the proliferation, colony formation, and repressed the induction of apoptosis in HEP-G2 and HuH-7 cells. Knockdown of ß-catenin reduced cell proliferation, colony formation, and tumorigenesis, and promoted cell apoptosis through the downregulation of UAP1 expression. In conclusion, this study revealed that the reciprocal regulation between O-GlcNAcylation and ß-catenin facilitated the proliferation of liver cancer.


Subject(s)
Acetylglucosamine/metabolism , Apoptosis , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , beta Catenin/metabolism , Carcinogenesis , Cell Survival , Disease Progression , Hep G2 Cells , Humans , Liver Neoplasms/enzymology , Nucleotidyltransferases/metabolism , Up-Regulation
12.
Biosci Rep ; 39(1)2019 01 31.
Article in English | MEDLINE | ID: mdl-30610158

ABSTRACT

The regenerative and immunomodulatory characteristics of mesenchymal stem cells (MSCs) make them attractive in the treatment of many diseases. Although they have shown promising preclinical studies of immunomodulation and paracrine effects in inflammatory airway disorders and other lung diseases, there are still challenges that have to be overcome before MSCs can be safely, effectively, and routinely applied in the clinical setting. A good understanding of the roles and mechanisms of the MSC immunomodulatory effects will benefit the application of MSC-based clinical therapy. In this review, we summarize the promises and challenges of the preclinical and clinical trials of MSC therapies, aiming to better understand the role that MSCs play in attempt to treat inflammatory airway disorders.


Subject(s)
Cell- and Tissue-Based Therapy/trends , Immunomodulation/genetics , Inflammation/therapy , Mesenchymal Stem Cell Transplantation/trends , Humans , Inflammation/genetics , Inflammation/pathology , Mesenchymal Stem Cells/cytology
13.
Stem Cell Reports ; 11(5): 1120-1135, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30344008

ABSTRACT

We previously identified an immunomodulatory role of human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (MSCs) in asthmatic inflammation. Mitochondrial transfer from bone marrow MSCs to epithelial cells can result in the attenuation of acute lung injury in mice. However, the effects of mitochondrial transfer from iPSC-MSCs to epithelial cells in asthma and the mechanisms underlying these effects are unclear. We found that iPSC-MSC transplantation significantly reduced T helper 2 cytokines, attenuated the mitochondrial dysfunction of epithelial cells, and alleviated asthma inflammation in mice. Tunneling nanotubes (TNTs) were formed between iPSC-MSCs and epithelial cells, and mitochondrial transfer from iPSC-MSCs to epithelial cells via TNTs was observed both in vitro and in mice. Overexpression or silencing of connexin 43 (CX43) in iPSC-MSCs demonstrated that CX43 plays a critical role in the regulation of TNT formation by mediating mitochondrial transfer between iPSC-MSCs and epithelial cells. This study provides a therapeutic strategy for targeting asthma inflammation.


Subject(s)
Asthma/pathology , Asthma/therapy , Connexin 43/metabolism , Induced Pluripotent Stem Cells/transplantation , Inflammation/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Mitochondria/metabolism , Animals , Apoptosis , Cell Line , Cobalt/pharmacology , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Humans , Induced Pluripotent Stem Cells/metabolism , Lung/pathology , Lung/physiopathology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mitochondria/drug effects , Mitochondria/ultrastructure , Nanotubes/chemistry , Ovalbumin
14.
Cell Transplant ; 27(9): 1340-1351, 2018 09.
Article in English | MEDLINE | ID: mdl-30056763

ABSTRACT

Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) represent a promising cell source for patient-specific cell therapy. We previously demonstrated that they display an immunomodulatory effect on allergic airway inflammation. Glucocorticoids are powerful anti-inflammatory compounds and widely used in the therapy of allergic diseases. However, the effect of glucocorticoids on the immunomodulatory function of iPSC-MSCs remains unknown. This study aimed to determine the effect of dexamethasone (Dex) on the immunomodulatory function of iPSC-MSCs in vitro and in vivo. A total of three human iPSC-MSC clones were generated from amniocyte-derived iPSCs. Anti-CD3/CD28-induced peripheral blood mononuclear cell (PBMC) proliferation was used to assess the effect of Dex on the immunoinhibitory function of iPSC-MSCs in vitro. Mouse models of contact hypersensitivity (CHS) and allergic airway inflammation were induced, and the levels of inflammation in mice were analyzed with the treatments of iPSC-MSCs and Dex, alone and combined. The results showed that Dex did not interfere with the immunoinhibitory effect of iPSC-MSCs on PBMC proliferation. In CHS mice, simultaneous treatment with Dex did not affect the effect of iPSC-MSCs on the inflammation, both in regional draining lymph nodes and in inflamed ear tissue. In addition, co-administration of iPSC-MSCs with Dex decreased the local expression of interferon (IFN)-γ and tumor necrosis factor (TNF)-α in the ears of CHS mice. In the mouse model of allergic airway inflammation, iPSC-MSC treatment combined with Dex resulted in a similar extent of reduction in pulmonary inflammation as iPSC-MSCs or Dex treatment alone. In conclusion, Dex does not significantly affect the immunomodulatory function of iPSC-MSCs both in vitro and in vivo. These findings may have implications when iPSC-MSCs and glucocorticoids are co-administered.


Subject(s)
Dermatitis, Contact/therapy , Dexamethasone/therapeutic use , Glucocorticoids/therapeutic use , Immunomodulation/drug effects , Mesenchymal Stem Cell Transplantation/methods , Pneumonia/therapy , Animals , Cell Differentiation , Cell Line , Cell Proliferation/drug effects , Disease Models, Animal , Female , Humans , Hypersensitivity/therapy , Induced Pluripotent Stem Cells/cytology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mice, Inbred BALB C
15.
Stem Cell Res Ther ; 9(1): 170, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29921316

ABSTRACT

BACKGROUND: It has been demonstrated previously that induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (MSCs) have immunosuppressive effects on activated T cells. However, the effects of iPSC-MSCs on quiescent T cells are still unknown. The aim of this study was to identify the immunomodulatory role of iPSC-MSCs on resting peripheral blood mononuclear cells (PBMCs) from allergic rhinitis (AR) patients. METHODS: PBMCs were cocultured with iPSC-MSCs without any stimulation, following which lymphocyte proliferation, activation of T cells, TH1/TH2 and regulatory T (Treg) cell differentiation, and Treg cell function were analyzed. The roles of soluble factors and cell-cell contact were examined to investigate the mechanisms involved. RESULTS: iPSC-MSCs promoted the proliferation of resting lymphocytes, activated CD4+ and CD8+ T cells, and upregulated and activated Treg cells without any additional stimulation. In addition, iPSC-MSCs balanced biased TH1/TH2 cytokine levels. Cell-cell contact was confirmed to be a possible mechanism involved. NF-κB was identified to play an important role in the immunomodulatory effects of iPSC-MSCs on quiescent T cells. CONCLUSIONS: iPSC-MSCs activate quiescent T cells and elevate regulatory T-cell response in AR patients, suggesting different immunomodulatory functions of iPSC-MSCs according to the phases of diseases. Therefore, iPSC-MSCs are a potential therapeutic candidate for treating allergic airway inflammation.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , NF-kappa B/metabolism , Rhinitis, Allergic/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes/immunology , Humans , Immunomodulation , Rhinitis, Allergic/pathology
16.
Cell Transplant ; 27(3): 571-583, 2018 03.
Article in English | MEDLINE | ID: mdl-29806480

ABSTRACT

Airway epithelial cell injury is a key triggering event to activate allergic airway inflammation, such as asthma. We previously reported that administration of mesenchymal stem cells (MSCs) significantly alleviated allergic inflammation in a mouse model of asthma, and the mmu-miR-21/ACVR2A axis may be involved. However, whether MSCs protect against bronchial epithelial cell injury induced by hypoxia, and the underlying mechanism, remain unknown. In our study, the human bronchial epithelial cell line BEAS-2B was induced to undergo apoptosis with a hypoxia mimic of cobalt chloride (CoCl2) damage. Treatment of MSCs derived from induced pluripotent stem cells (iPSCs) significantly decreased apoptosis of BEAS-2B cells. There was high miR-21 expression in injured BEAS-2B cells after MSC treatment. Transfection of the miR-21 mimic significantly decreased apoptosis of BEAS-2B, and transfection of a miR-21 inhibitor significantly increased apoptosis. More importantly, the protective effects of MSCs on injured BEAS-2B were reversed by transfection of the miR-21 inhibitor. Binding sites of human miR-21 were identified in the 3'UTR of human ACVR2A. We further determined that CoCl2 stimulation increased ACVR2A expression at both the mRNA and protein levels. Moreover, transfection of the miR-21 mimic further up-regulated ACVR2A expression induced by CoCl2, whereas transfection of the miR-21 inhibitor down-regulated ACVR2A expression. In addition, MSCs increased ACVR2A expression in BEAS-2B cells; however, this effect was reversed after transfection of the miR-21 inhibitor. Our data suggested that MSCs protect bronchial epithelial cells from hypoxic injury via miR-21, which may represent an important target. These findings suggest the potentially wide application of MSCs for epithelial cell injury during hypoxia.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Apoptosis/genetics , Apoptosis/physiology , Cell Hypoxia/genetics , Cell Hypoxia/physiology , Cell Line , Humans , MicroRNAs/genetics , Signal Transduction/genetics , Signal Transduction/physiology
17.
Stem Cell Res Ther ; 9(1): 147, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29793557

ABSTRACT

BACKGROUND: Human induced pluripotent stem cells-derived mesenchymal stem cells (iPSC-MSCs) have been shown to be effective in Type 2 helper T cells (Th2)-dominant eosinophilic allergic airway inflammation. However, the role of iPSC-MSCs in Type 17 helper T cells (Th17)-dominant neutrophilic airway inflammation remains poorly studied. Therefore, this study was to explore the effects of iPSC-MSCs on an experimental mouse model of steroid-resistant neutrophilic airway inflammation and further determine the underlying mechanisms. METHODS: A mouse model of neutrophilic airway inflammation was established using ovalbumin (OVA) and lipopolysaccharide (LPS). Human iPSC-MSCs were systemically administered, and the lungs or bronchoalveolar lavage fluids (BALF) were collected at 4 h and 48 h post-challenge. The pathology and inflammatory cell infiltration, the T helper cells, T helper cells-associated cytokines, nuclear transcription factors and possible signaling pathways were evaluated. Human CD4+ T cells were polarized to T helper cells and the effects of iPSC-MSCs on the differentiation of T helper cells were determined. RESULTS: We successfully induced the mouse model of Th17 dominant neutrophilic airway inflammation. Human iPSC-MSCs but not dexamethasone significantly prevented the neutrophilic airway inflammation and decreased the levels of Th17 cells, IL-17A and p-STAT3. The mRNA levels of Gata3 and RORγt were also decreased with the treatment of iPSC-MSCs. We further confirmed the suppressive effects of iPSC-MSCs on the differentiation of human T helper cells. CONCLUSIONS: iPSC-MSCs showed therapeutic potentials in neutrophilic airway inflammation through the regulation on Th17 cells, suggesting that the iPSC-MSCs could be applied in the therapy for the asthma patients with steroid-resistant neutrophilic airway inflammation.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL/genetics , Neutrophils/metabolism , Th17 Cells/metabolism , Animals , Female , Humans , Inflammation , Mice
18.
Int Arch Allergy Immunol ; 176(2): 124-132, 2018.
Article in English | MEDLINE | ID: mdl-29642055

ABSTRACT

The T helper 2 (Th2)-type response was considered the hypostasis of allergic airway diseases, including asthma and allergic rhinitis (AR). However, more recent studies have suggested that allergic airway inflammation also depends on innate immunity and is closely related to group 2 innate lymphoid cells (ILC2s). This study evaluated the ILC2 levels of asthma subjects, patients with asthma and AR, and healthy individuals, regarding how to investigate the relationship between clinical data and ILC2 levels. It was found that asthma patients and asthma with AR patients had higher ILC2 levels compared to healthy subjects. ILC2s were positively correlated with the percentage of eosinophils in patients with asthma and AR, but not with pulmonary function. ILC2 levels were higher in mild asthma subjects than in patients with severe asthma. This study provides a new interpretation of the pathogenesis of allergic airway inflammation and may provide a new direction for the diagnosis and assessment of allergic airway diseases.


Subject(s)
Asthma/immunology , Eosinophils/immunology , Lymphocytes/immunology , Adult , Asthma/etiology , Asthma/physiopathology , Female , Forced Expiratory Volume , Humans , Male
19.
Mol Immunol ; 95: 47-55, 2018 03.
Article in English | MEDLINE | ID: mdl-29407576

ABSTRACT

BACKGROUND: Asthma is affecting more than 300 million people worldwide, which represents the most common chronic disease among children. We previously found that mesenchymal stem cells (MSCs) derived from induced pluripotent stem cells (iPSCs) modulated the immune response on Th2-mediated asthma in vivo and in vitro. This study further evaluated the immunomodulatory effects of MSCs from human embryonic stem cells (hESCs) on asthma. METHODS: Multipotent hESC-MSCs were obtained using a feeder-free method. The hESC-MSCs were analysed for the expression of stem cell surface markers by flow cytometry, their differentiation potentials were analysed using in vitro trilineage differentiation methods hESC-MSCs were transplanted into the murine model with ovalbumin (OVA)-induced airway allergic inflammation. The expression levels of allergic related genes were measured by the mRNA PCR arrays. RESULTS: The hESC-MSCs expressed classical MSC markers and held the capability of differentiation into multiple mesoderm-type cell lineages. hESC-MSCs were able to suppress allergic inflammation by modulating Th2 cells and eosinophils in the mice, and reversed the reduction of regulatory T cells. By using PCR array, 5 mRNAs- chemokine (C-C motif) ligand 11 (Ccl11), Ccl24, interleukin13 (Il13), Il33 and eosinophil-associated, ribonuclease A family, member 11 (Ear11) were identified the most relevant in murine airway allergic inflammation and hESC-MSCs treatment. CONCLUSIONS: The therapeutic effects of hESC-MSCs were identified in the murine model of airway allergic inflammation with key mRNAs involved. This study will provide a better understanding regarding the mechanisms underlying hESC-MSCs therapeutic application in airway allergic inflammation.


Subject(s)
Asthma/genetics , Asthma/therapy , Cell Differentiation , Human Embryonic Stem Cells/physiology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Animals , Asthma/pathology , Cells, Cultured , Disease Models, Animal , Female , Human Embryonic Stem Cells/transplantation , Humans , Mice , Mice, Inbred BALB C , Transplantation, Heterologous
20.
Article in English | MEDLINE | ID: mdl-30647765

ABSTRACT

We aim to conduct a meta-analysis of studies on the effect of Aidi injection combined with TACE in the treatment of hepatocellular carcinoma (HCC). China National Knowledge Infrastructure (CNKI), Wanfang Database, Chinese Biomedical Literature Database (CBM), Chinese Science and Technology Periodical Database (VIP), Allied and Complementary Medicine Database (AMED), EMBASE, Web of Science, PubMed, and Cochrane Library databases to October 1, 2017, were searched to collect the studies. The data analysis was performed using RevMan 5.3 software. Totally 20 clinical trials with 774 (the experimental group: 447 cases; the control group: 327 cases) HCC patients were finally included in this meta-analysis. Meta-analysis results showed that Aidi injection combined with TACE can, to some extent, enhance the clinical effect and improve the overall survival. Meanwhile, it can increase HCC patients' quality of life. Additionally, Aidi injection plus TACE can reduce adverse events including leukopenia, gastrointestinal reaction, and liver damage in HCC patients (all P < 0.05). Therefore, Aidi injection plus TACE may significantly enhance the clinical effect, suggesting that the combination of TCM and western medicine is promising. The exact outcome needs rigorously designed performances, multicenter, and large randomized controlled trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...