Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931726

ABSTRACT

This article shows an all-dielectric metasurface consisting of "H"-shaped silicon disks with tilted splitting gaps, which can detect the temperature and refractive index (RI). By introducing asymmetry parameters that excite the quasi-BIC, there are three distinct Fano resonances with nearly 100% modulation depth, and the maximal quality factor (Q-factor) is over 104. The predominant roles of different electromagnetic excitations in three distinct modes are demonstrated through near-field analysis and multipole decomposition. A numerical analysis of resonance response based on different refractive indices reveals a RI sensitivity of 262 nm/RIU and figure of merit (FOM) of 2183 RIU-1. This sensor can detect temperature fluctuations with a temperature sensitivity of 59.5 pm/k. The proposed metasurface provides a novel method to induce powerful TD resonances and offers possibilities for the design of high-performance sensors.

2.
Opt Express ; 32(10): 18087-18098, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858973

ABSTRACT

In this paper, a highly sensitive sensor consisting of a silicon nanorod and symmetric rings (SNSR) is presented. Theoretically, three Fano resonances with high Q-factors are excited in the near-infrared range by breaking the symmetry structure based on quasi-bound states in the continuum (Q-BICs). The electromagnetic near-field analysis confirms that the resonances are mainly controlled by toroidal dipole (TD) resonance. The structure is optimized by adjusting different geometrical parameters, and the maximum Q-factor of the Fano resonances can reach 7427. To evaluate the sensing performance of the structure, the sensitivity and the figure of merit (FOM) are calculated by adjusting the environmental refractive index: the maximum sensitivity of 474 nm/RIU and the maximum FOM of 3306 RIU-1. The SNSR can be fabricated by semiconductor-compatible processes, which is experimentally evaluated for changes in transmission spectra at different solution concentrations. The results show that the sensitivity and the Q-factor of the designed metasurface can reach 295 nm/RIU and 850, while the FOM can reach 235 RIU-1. Therefore, the metasurface of SNSR is characterized by high sensitivity and multi-wavelength sensing, which are current research hotspots in the field of optics and can be applied to biomedical sensing and multi-target detection.

3.
Biomed Opt Express ; 15(4): 2406-2418, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38633064

ABSTRACT

A multi-function sensor based on an all-dielectric metastructure for temperature and refractive index sensing simultaneously is designed and analyzed in this paper. The structure is composed of a periodic array of silicon dimers placed on the silicon dioxide substrate. By breaking the symmetry of the structure, the ideal bound states in the continuum can be converted to the quasi-bound states in the continuum, and three Fano resonances are excited in the near-infrared wavelength. Combining with the electromagnetic field distributions, the resonant modes of three Fano resonances are analyzed as magnetic dipole, magnetic toroidal dipole, and electric toroidal dipole, respectively. The proposed sensor exhibits an impressive maximal Q-factor of 9352, with a modulation depth approaching 100%. Our investigation into temperature and refractive index sensing properties reveals a maximum temperature sensitivity of 60 pm/K. Regarding refractive index sensing, the sensitivity and figure of merit are determined to be 279.5 nm/RIU and 2055.1 RIU-1, respectively. These findings underscore the potential of the all-dielectric metastructure for simultaneous multi-parameter measurements. The sensor's versatility suggests promising applications in biological and chemical sensing.

4.
Biomed Opt Express ; 15(1): 294-305, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38223189

ABSTRACT

Fano resonance with high Q-factor is considered to play an important role in the field of refractive index sensing. In this paper, we theoretically and experimentally investigate a refractive index sensor with high performance, realizing a new approach to excite multiple Fano resonances of high Q-factor by introducing an asymmetric parameter to generate a quasi-bound state in the continuum (BIC). Combined with the electromagnetic properties, the formation mechanism of Fano resonances in multiple different excitation modes is analyzed and the resonant modes of the three resonant peaks are analyzed as toroidal dipole (TD), magnetic quadrupole (MQ), and magnetic dipole (MD), respectively. The simulation results show that the proposed metastructure has excellent sensing properties with a Q-factor of 3668, sensitivity of 350 nm/RIU, and figure of merit (FOM) of 1000. Furthermore, the metastructure has been fabricated and investigated experimentally, and the result shows that its maximum Q-factor, sensitivity and FOM can reach 634, 233 nm/RIU and 115, respectively. The proposed metastructure is believed to further contribute to the development of biosensors, nonlinear optics, and lasers.

5.
Appl Opt ; 62(31): 8381-8389, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38037943

ABSTRACT

We numerically investigate two Fano resonances with high Q-factors based on a permittivity-asymmetric metastructure composed of two pea-shaped cylinders. By employing different materials to break the permittivity-asymmetry, the quasi-bound state of the continuum spectrum (BIC) resonance at 982.87 nm is excited, showing the Q-factor as high as 8183.7. The electromagnetic fields and vectors are analyzed by using the finite-difference time-domain (FDTD) method, and the resonance modes are identified as magnetic dipole (MD) responses and MDs by multipole decomposition in Cartesian coordinates, displaying that the light is confined within a pea-shaped cylinder to achieve localized field enhancement. In addition, the sensing performances of the metastructure are evaluated, and an optical refractive index sensor can be obtained with the sensitivity of 152 nm/RIU and maximum figure of merit (FOM) of 832.6. This proposed structure offers a new, to the best of our knowledge, way to achieve Fano resonant excitation on all-dielectric metastructures and can be used in nonlinear optics, biosensing, optical switches, and lasers.

6.
Opt Express ; 31(6): 10805-10819, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157619

ABSTRACT

In this paper, an all-dielectric metasurface consisting of a unit cell containing a nanocube array and organized periodically on a silicon dioxide substrate is designed and analyzed. By introducing asymmetric parameters that can excite the quasi-bound states in the continuum, three Fano resonances with high Q-factor and high modulation depth may be produced in the near-infrared range. Three Fano resonance peaks are excited by magnetic dipole and toroidal dipole, respectively, in conjunction with the distributive features of electromagnetism. The simulation results indicate that the discussed structure can be utilized as a refractive index sensor with a sensitivity of around 434 nm/RIU, a maximum Q factor of 3327, and a modulation depth equal to 100%. The proposed structure has been designed and experimentally investigated, and its maximum sensitivity is 227 nm/RIU. At the same time, the modulation depth of the resonance peak at λ = 1185.81 nm is nearly 100% when the polarization angle of the incident light is 0 °. Therefore, the suggested metasurface has applications in optical switches, nonlinear optics, and biological sensors.

7.
Heliyon ; 9(1): e12990, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36820188

ABSTRACT

We have designed and analyzed the high quality-factor (Q-factor), multiple Fano resonances device on the basis of the all-dielectric metastructure. The unit structure consists of two rectangular air holes etched within a silicon cube and periodically aligns on the substrate of silicon dioxide. The results demonstrate that four Fano resonances are achieved by integrating the theory of bound states in the continuum (BIC)and breaking the symmetry (width symmetry or depth symmetry) of two rectangle air holes, and the resonant wavelength can be modified by altering structural parameters. The sensing characteristics of the presented structure are studied. The sensitivity(S) of 304 nm/RIU, the maximal Q-factor of 2142 and the figure of merit (FOM) of 515.3 are achieved while width symmetry is broken. Meanwhile, the sensitivity of 280 nm/RIU, the maximal Q-factor of 2517 and the FOM of 560 are gotted through breaking depth symmetry. The proposed metastructures can be used for the lasers, biosensing and nonlinear optics.

8.
Chaos ; 30(2): 023103, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32113229

ABSTRACT

We study the totally asymmetric simple exclusion process on multiplex networks, which consist of a fixed set of vertices (junctions) connected by different types of links (segments). In particular, we assume that there are two types of segments corresponding to two different values of hopping rate of particles (larger hopping rate indicates particles move with higher speed on the segments). By simple mean-field analysis and extensive simulations, we find that, at the intermediate values of particle density, the global current (a quantity that is related to the number of hops per unit time) drops and then rises slightly as the fraction of low-speed segments increases. The rise in the global current is a counterintuitive phenomenon that cannot be observed in high or low particle density regions. The reason lies in the bimodal distribution of segment densities, which is caused by the high-speed segments.

9.
Appl Opt ; 51(24): 5767-72, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22907001

ABSTRACT

Hybrid integrated photodetectors with flat-top steep-edge spectral responses that consist of an Si-based multicavity Fabry-Perot (F-P) filter and an InP-based p-i-n absorption structure (with a 0.2 µm In(0.53)Ga(0.47)As absorption layer), have been designed and fabricated. The performance of the hybrid integrated photodetectors is theoretically investigated by including key factors such as the thickness of each cavity, the pairs of each reflecting mirror, and the thickness of the benzocyclobutene bonding layer. The device is fabricated by bonding an Si-based multicavity F-P filter with an InP-based p-i-n absorption structure. A hybrid integrated photodetector with a peak quantum efficiency of 55% around 1549.2 nm, the -0.5 dB band of 0.43 nm, the 25 dB band of 1.06 nm, and 3 dB bandwidth more than 16 GHz, is simultaneously obtained. Based on multicavity F-P structure, this device has good flat-top steep-edge spectral response.

SELECTION OF CITATIONS
SEARCH DETAIL
...