Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Clin Res Hepatol Gastroenterol ; 48(7): 102388, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810880

ABSTRACT

Acute pancreatitis (AP) is a frequent but severe abdominal emergency in general surgery with intestinal barrier dysfunction. Heat shock protein 70 (HSP70) is a ubiquitous molecular chaperone that has been proposed to exert favorable effects on AP. Nonetheless, the detailed impacts of HSP70 on the intestinal barrier function in AP are unknown, which will be investigated here. After the injection of sodium taurocholate into the biliopancreatic duct, the rat models of AP were established. After modeling, HSP70 expression was up-regulated through lentivirus infection. Western blot was used to detect HSP70 expression. H&E staining was used to examine the histological changes in the pancreatic and intestinal tissues. The levels of pancreatic biochemical markers and oxidative stress markers were detected using corresponding assay kits. ELISA was used to detect the levels of inflammatory cytokines and gastrointestinal function indicators. Immunofluorescence staining and Western blot were used to detect the expression of tight junction proteins. DCFH-DA probe and MitoSOX Red probe were used to detect total reactive oxygen species (ROS) and mitochondrial ROS (mtROS), respectively. TUNEL assay and Western blot were used to detect apoptosis. During the model construction, severe pancreatic and abnormal intestinal tissue abnormalities were observed, inflammatory response was activated and the intestinal barrier was disrupted. HSP70 expression was down-regulated in the intestinal tissues AP rat models. HSP70 ameliorated the morphological damage of pancreatic and intestinal tissues of AP rats. In addition, HSP70 significantly reduced intestinal barrier damage, inflammatory response, oxidative stress and apoptosis in the intestinal tissues of AP rat models. Collectively, HSP70 might attenuate AP through exerting anti-inflammatory, anti-oxidant, anti-apoptotic effects and inhibiting intestinal barrier disruption.

2.
Heliyon ; 10(9): e30284, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707379

ABSTRACT

E3 ubiquitin ligases comprise a family of ubiquitination-catalyzing enzymes that have been extensively researched and are considered crucial components of the ubiquitin-proteasome system involved in various diseases. The ubiquitin-protein ligase E3 component n-recognition 5 (UBR5) is an E3 ubiquitin-protein ligase that has garnered considerable interest of late. Recent studies demonstrate that UBR5 undergoes high-frequency mutations, chromosomal amplification, and/or abnormalities during expression of various malignant tumors. These alterations correlate with the biological behaviors and prognoses of malignancies, such as tumor invasion, metastasis, and resistance to chemotherapeutic agents. This study aimed to comprehensively elucidate the biological functions of UBR5, and its role and relevance in the context of gastrointestinal cancers. Furthermore, this article expounds a scientific basis to explore the molecular mechanisms underlying gastrointestinal cancers and developing targeted therapeutic strategies for their remediation.

3.
World J Gastroenterol ; 29(30): 4642-4656, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37662862

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) is a disease featuring acute inflammation of the pancreas and histological destruction of acinar cells. Approximately 20% of AP patients progress to moderately severe or severe pancreatitis, with a case fatality rate of up to 30%. However, a single indicator that can serve as the gold standard for prognostic prediction has not been discovered. Therefore, gaining deeper insights into the underlying mechanism of AP progression and the evolution of the disease and exploring effective biomarkers are important for early diagnosis, progression evaluation, and precise treatment of AP. AIM: To determine the regulatory mechanisms of tRNA-derived fragments (tRFs) in AP based on small RNA sequencing and experiments. METHODS: Small RNA sequencing and functional enrichment analyses were performed to identify key tRFs and the potential mechanisms in AP. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was conducted to determine tRF expression. AP cell and mouse models were created to investigate the role of tRF36 in AP progression. Lipase, amylase, and cytokine levels were assayed to examine AP progression. Ferritin expression, reactive oxygen species, malondialdehyde, and ferric ion levels were assayed to evaluate cellular ferroptosis. RNA pull down assays and methylated RNA immunoprecipitation were performed to explore the molecular mechanisms. RESULTS: RT-qPCR results showed that tRF36 was significantly upregulated in the serum of AP patients, compared to healthy controls. Functional enrichment analysis indicated that target genes of tRF36 were involved in ferroptosis-related pathways, including the Hippo signaling pathway and ion transport. Moreover, the occurrence of pancreatic cell ferroptosis was detected in AP cells and mouse models. The results of interference experiments and AP cell models suggested that tRF-36 could promote AP progression through the regulation of ferroptosis. Furthermore, ferroptosis gene microarray, database prediction, and immunoprecipitation suggested that tRF-36 accelerated the progression of AP by recruiting insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) to the p53 mRNA m6A modification site by binding to IGF2BP3, which enhanced p53 mRNA stability and promoted the ferroptosis of pancreatic follicle cells. CONCLUSION: In conclusion, regulation of nuclear pre-mRNA domain-containing protein 1B promoted AP development by regulating the ferroptosis of pancreatic cells, thereby acting as a prospective therapeutic target for AP. In addition, this study provided a basis for understanding the regulatory mechanisms of tRFs in AP.


Subject(s)
Pancreatitis , Animals , Mice , Pancreatitis/genetics , Acute Disease , Tumor Suppressor Protein p53 , RNA, Transfer/genetics , RNA , RNA, Messenger/genetics
4.
Eur J Gastroenterol Hepatol ; 35(8): 854-864, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37395238

ABSTRACT

OBJECTIVE: This study aimed to investigate the effect of oleracein E (OE) in improving 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis (UC). METHODS: Lipopolysaccharide (LPS) was used to induce a UC cell model, and TNBS was used to induce a UC rat model. ELISA was performed to assess the levels of inflammatory factors (IL-1ß, TNF-α, and IL-6). Moreover, the activities of catalase (CAT), myeloperoxidase (MPO), and malonaldehyde (MDA) were detected by kits. Western blotting was performed to assess related proteins of the Nrf2/HO-1 signaling pathway, tight junction protein (ZO-1, Occludin, and claudin-2) expression levels, and apoptosis-related proteins (Bcl2, Bax, and cleaved caspase 3). Flow cytometry was used to analyze ROS levels. The morphology of colon tissues and the apoptosis of cells were detected by HE and TUNEL staining, respectively. RESULTS: OE significantly increased the activity of CAT and decreased the activity of MPO in LPS-induced Caco-2 cells and TNBS-induced UC rats. However, the levels of IL-1ß, IL-6, and TNF-α were markedly reduced both in vivo and in vitro. In addition, OE significantly increased the levels of Nrf2/HO-1 signaling pathway-related proteins and tight junction proteins and inhibited cell apoptosis. HE staining showed that OE significantly decreased the severity of acute TNBS-induced colitis in rats. CONCLUSION: OE may exert a regulatory effect on ameliorating intestinal barrier injury and reducing inflammation and oxidative stress levels by activating the Nrf2/HO-1 pathway.


Subject(s)
Colitis, Ulcerative , Colitis , Rats , Humans , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Tumor Necrosis Factor-alpha , Interleukin-6 , Trinitrobenzenesulfonic Acid/toxicity , Caco-2 Cells , Lipopolysaccharides , NF-E2-Related Factor 2
5.
J Oncol ; 2022: 8777697, 2022.
Article in English | MEDLINE | ID: mdl-35535309

ABSTRACT

Emerging studies have proved that tRNA-derived fragments (tRFs) play vital roles in tumor metastasis; however, the function of tRFs in gastric cancer (GC) remains largely unclear. We investigated the role of tRF-24-V29K9UV3IU in growth and metastasis of GC using a xenograft mouse model. Differential gene expression downstream of tRF-24-V29K9UV3IU was identified by transcriptome sequencing, and interaction was then verified by a dual luciferase reporter and RNA immunoprecipitation. MKN-45 cells were also used to explore the biological functions of tRF-24-V29K9UV3IU in vitro. Here, knockdown of tRF-24-V29K9UV3IU promoted tumor growth and metastasis of GC in vivo. The expression of tRF-24-V29K9UV3IU and E-cadherin (epithelial cell marker) was down-regulated in tumors of mice following tRF-24-V29K9UV3IU knockdown, whereas the mesenchymal cell markers N-cadherin and vimentin displayed an opposite trend. Transcriptome sequencing identified 87 differentially expressed genes (DEGs) down-regulated in the tRF-24-V29K9UV3IU-overexpressed groups compared with the control group. Among them, G-protein-coupled receptor 78 (GPR78), the most significantly down-regulated DEG, was also predicted to be a target of tRF-24-V29K9UV3IU. Moreover, tRF-24-V29K9UV3IU could function as a miRNA-like fragment and bind to AGO2 and directly silence GPR78 expression by complementing with the 3'-untranslated region of the GPR78 mRNA. Functionally, overexpression of tRF-24-V29K9UV3IU significantly suppressed proliferation, migration, and invasion and promoted apoptosis of MKN-45 cells, whereas GPR78 attenuated these effects. Therefore, our data suggest that tRF-24-V29K9UV3IU functions as a miRNA-like fragment to suppress GPR78 expression and thus inhibit GC progression. These observations suggest that the tRF-24-V29K9UV3IU/GPR78 axis serves as a potential therapeutic target in GC.

6.
Nutr Metab (Lond) ; 19(1): 29, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35428314

ABSTRACT

BACKGROUND: L-theanine, a non-protein amino acid was found principally in the green tea, has been previously shown to exhibit potent anti-obesity property and hepatoprotective effect. Herein, we investigated the effects of L-theanine on alleviating nonalcoholic hepatic steatosis in vitro and in vivo, and explored the underlying molecular mechanism. METHODS: In vitro, HepG2 and AML12 cells were treated with 500 µM oleic acid (OA) or treated with OA accompanied by L-theanine. In vivo, C57BL/6J mice were fed with normal control diet (NCD), high-fat diet (HFD), or HFD along with L-theanine for 16 weeks. The levels of triglycerides (TG), accumulation of lipid droplets and the expression of genes related to hepatocyte lipid metabolic pathways were detected in vitro and in vivo. RESULTS: Our data indicated that, in vivo, L-theanine significantly reduced body weight, hepatic steatosis, serum levels of alanine transaminase (ALT), aspartate transaminase (AST), TG and LDL cholesterol (LDL-C) in HFD-induced nonalcoholic fatty liver disease (NAFLD) mice. In vitro, L-theanine also significantly alleviated OA induced hepatocytes steatosis. Mechanic studies showed that L-theanine significantly inhibited the nucleus translocation of sterol regulatory element binding protein 1c (SREBP-1c) through AMPK-mTOR signaling pathway, thereby contributing to the reduction of fatty acid synthesis. We also identified that L-theanine enhanced fatty acid ß-oxidation by increasing the expression of peroxisome proliferator-activated receptor α (PPARα) and carnitine palmitoyltransferase-1 A (CPT1A) through AMP-activated protein kinase (AMPK). Furthermore, our study indicated that L-theanine can active AMPK through its upstream kinase Calmodulin-dependent protein kinase kinase-ß (CaMKKß). CONCLUSIONS: Taken together, our findings suggested that L-theanine alleviates nonalcoholic hepatic steatosis by regulating hepatocyte lipid metabolic pathways via the CaMKKß-AMPK signaling pathway.

7.
Cell Mol Life Sci ; 79(1): 54, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34936032

ABSTRACT

Glutathione S-transferase pi (GSTpi) is an important phase II detoxifying enzyme that participates in various physiological processes, such as antioxidant, detoxification, and signal transduction. The high expression level of GSTpi has been reported to be related to drug-resistant and anti-inflammatory and it functioned via its non-catalytic ligandin. However, the previous protection mechanism of GSTpi in DNA damage has not been addressed so far. Nijmegen breakage syndrome 1 (NBS1) is one of the most important sensor proteins to detect damaged DNA. Here, we investigated the interaction between GSTpi and NBS1 in HEK-293 T cells and human breast adenocarcinoma cells during DNA damage. Our results showed that overexpression of GSTpi in cells by transfecting DNA vector decreased the DNA damage level after methyl methanesulfonate (MMS) or adriamycin (ADR) treatment. We found that cytosolic GSTpi could increase NBS1 ubiquitin-mediated degradation in unstimulated cells, which suggested that GSTpi could maintain the basal level of NBS1 during normal conditions. In response to DNA damage, GSTpi can be phosphorylated in Ser184 and inhibit the ubiquitination degradation of NBS1 mediated by Skp2 to recover NBS1 protein level. Phosphorylated GSTpi can further enhance NBS1 nuclear translocation to activate the ATM-Chk2-p53 signaling pathway. Finally, GSTpi blocked the cell cycle in the G2/M phase to allow more time for DNA damage repair. Thus, our finding revealed the novel mechanism of GSTpi via its Ser184 phosphorylation to protect cells from cell death during DNA damage and it enriches the function of GSTpi in drug resistance.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Damage , Glutathione S-Transferase pi/physiology , Nijmegen Breakage Syndrome/metabolism , Nuclear Proteins/metabolism , HEK293 Cells , Humans , MCF-7 Cells , Phosphorylation , Ubiquitination
8.
Life Sci ; 275: 119355, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33744326

ABSTRACT

AIM: The aim of this study was to explore the antitumor effect of citrate on prostate cancer and its underlying mechanism. MAIN METHODS: CCK-8 and Colony formation assay were performed to detect the anti-proliferative effect of citrate on prostate cancer. Flow cytometry analysis was conducted to investigate the pro-apoptosis effect of citrate on prostate cancer. Immunofluorescence assay was taken to detect whether citrate induced autophagy in prostate cancer. Western blot and Immunohistochemical assay were performed to explore the underlying mechanism by which citrate activates autophagic death in prostate cancer cells. Xenograft tumorigenicity assay was conducted to explore whether citrate suppressed the growth of xenograft prostate tumors in vivo. KEY FINDINGS: We found citrate could significantly induce apoptosis and autophagy of prostate cancer cells in vitro and in vivo. Furthermore, treatment with autophagy inhibitor (chloroquine) drastically suppresses the apoptosis rate of prostate cancer induced by citrate. Based on the Ca2+-chelating property of citrate, the further study suggested that citrate activates autophagic cell death in prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway. Finally, citrate suppresses the growth of xenograft prostate tumors without remarkable toxicity in mice. SIGNIFICANCE: Our study elucidated a novel molecular mechanism about the anti-cancer activities of citrate. That citrate activates autophagic cell death of prostate cancer via downregulation CaMKII/AKT/mTOR pathway and without remarkable toxicity in mice. This study suggests that citrate might be a promising therapeutic agent for the treatment of prostate cancer.


Subject(s)
Autophagic Cell Death/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Citric Acid/pharmacokinetics , Prostatic Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Blotting, Western , Cell Line, Tumor , Down-Regulation , Flow Cytometry , Fluorescent Antibody Technique , Humans , Male , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , PC-3 Cells , Prostatic Neoplasms/metabolism , Signal Transduction/drug effects
9.
J Nutr Biochem ; 89: 108556, 2021 03.
Article in English | MEDLINE | ID: mdl-33249185

ABSTRACT

Prostate cancer (PCa) is a very prevalent male-specific malignancy; most PCa patients eventually die as a result of metastasis. L-theanine (C7H14N2O3), a nonprotein amino acid derivative from green tea leaves, has been demonstrated to act as an anticarcinogen through proapoptotic and antiproliferative effects. However, the antimetastatic effect of L-theanine in tumor cells and its underlying mechanism are still unclear. Here, we found that L-theanine could suppress invasion, migration, and increase cell-cell adhesion of prostate cancer cells in vitro and in vivo. We also found that L-theanine could inhibit the epithelial-mesenchymal transition process in PCa. Our study revealed that L-theanine could downregulate MMP9, N-cadherin, Vimentin, Snail, and upregulate E-cadherin. Furthermore, L-theanine suppressed the transcription of MMP9 and Snail by significantly inhibiting the ERK/NF-κB signaling pathway and the binding activity of p65 to the promoter regions of MMP9 and Snail. All of these findings suggest that L-theanine has therapeutic potential for metastatic PCa and may be considered a promising candidate for antimetastatic therapy of prostate cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Glutamates/pharmacology , Matrix Metalloproteinase 9/metabolism , Neoplasm Metastasis/pathology , Prostatic Neoplasms/pathology , Snail Family Transcription Factors/metabolism , Animals , Antineoplastic Agents/metabolism , Cadherins/metabolism , Cell Movement/drug effects , Down-Regulation , Epithelial-Mesenchymal Transition/drug effects , Glutamates/metabolism , Humans , Male , Mice , NF-kappa B/metabolism , PC-3 Cells , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Signal Transduction/drug effects , Tea/chemistry , Vimentin/metabolism
10.
Onco Targets Ther ; 13: 10931-10943, 2020.
Article in English | MEDLINE | ID: mdl-33149609

ABSTRACT

PURPOSE: Gastric cancer (GC) is the second leading cause of cancer-related deaths worldwide. tRNA-derived fragments (tRFs) have been identified as potential biomarkers and cancer therapeutic targets. However, the influence of tRFs on GC remains unknown. The key tRFs were researched in vitro function and mechanism. PATIENTS AND METHODS: Here, differentially expressed tRFs between GC and paracancerous tissues were identified by small RNA sequencing, and the role of key tRF was evaluated in vitro. RESULTS: Eight tRFs were significantly differentially expressed between GC tissues and adjacent tissues: five were significantly upregulated and three were downregulated in GC tissues. The results of target gene prediction and functional enrichment analysis showed that tRFs with different expressions were mainly involved in cell adhesion and connection, cell migration, wingless-type (Wnt), mitogen-activated protein kinase (MAPK), and cancer signaling pathways. Quantitative real-time polymerase chain reaction (qRT-PCR) indicated that the expression of tRF-24-V29K9UV3IU and its target genes (CCND2, FZD3, and VANGL1) in GC tissues and cells was decreased compared with those in the control group. Importantly, overexpression of tRF-24-V29K9UV3IU inhibited cell proliferation, migration and invasion, while promoted cell apoptosis of GC cells. CONCLUSION: This study suggests that tRF-24-V29K9UV3IU may hinder GC tumor progression by inhibiting cell proliferation, migration, invasion, while promoting cell apoptosis by regulating the Wnt signaling pathways.

11.
Inflammation ; 43(3): 1157-1169, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32128658

ABSTRACT

Glutathione S-transferase Pi (GSTP1) was originally identified as one of the cytosolic phase II detoxification enzymes and was also considered to function via its non-catalytic, ligand-binding activity. Autophagy is a self-protective mechanism of the cell to remove unnecessary or dysfunctional components, which plays a crucial role in balancing the beneficial and detrimental effects of immunity and inflammation. However, little is known about whether and how GSTP1 mediates autophagy via inhibiting LPS-induced inflammatory response. Here, we show that LPS-induced autophagy and autophagic flux blockade in THP-1 cells in a concentration- and time-dependent manner. Further, we found that the autophagy activation inhibited the activation of inflammatory signaling pathway and the release of inflammatory factors. However, inhibition of autophagy by 3-methyladenine or chloroquine significantly reduced the anti-inflammatory effect of GSTP1. In addition, our findings provide evidence that GSTP1 regulates autophagy through PI3K-Akt-mTOR pathway and inhibits LPS-induced inflammation. Overall, the current study provides an important reference for future applications of GSTP1 in the treatment of inflammatory diseases.


Subject(s)
Autophagy/physiology , Glutathione S-Transferase pi/biosynthesis , Lipopolysaccharides/toxicity , THP-1 Cells/metabolism , Autophagy/drug effects , Dose-Response Relationship, Drug , Humans , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/prevention & control , THP-1 Cells/drug effects
12.
Front Immunol ; 11: 625542, 2020.
Article in English | MEDLINE | ID: mdl-33603756

ABSTRACT

CREB binding protein (CBP), a transcriptional coactivator and acetyltransferase, is involved in the pathogenesis of inflammation-related diseases. High mobility group box-1 protein (HMGB1) is a critical mediator of lethal sepsis, which has prompted investigation for the development of new treatment for inflammation. Here, we report that the potent and selective inhibition of CBP bromodomain by SGC-CBP30 blocks HMGB1-mediated inflammatory responses in vitro and in vivo. Our data suggest that CBP bromodomain inhibition suppresses LPS-induced expression and release of HMGB1, when the inhibitor was given 8 h post LPS stimulation; moreover, CBP bromodomain inhibition attenuated pro-inflammatory activity of HMGB1. Furthermore, our findings provide evidence that SGC-CBP30 down-regulated rhHMGB1-induced activation of MAPKs and NF-κB signaling by triggering the reactivation of protein phosphatase 2A (PP2A) and the stabilization of MAPK phosphatase 1 (MKP-1). Collectively, these results suggest that CBP bromodomain could serve as a candidate therapeutic target for the treatment of lethal sepsis via inhibiting LPS-induced expression and release of HMGB1 and suppressing the pro-inflammatory activity of HMGB1.


Subject(s)
Anti-Inflammatory Agents/pharmacology , CREB-Binding Protein/antagonists & inhibitors , Down-Regulation/drug effects , HMGB1 Protein/immunology , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Sepsis , Animals , CREB-Binding Protein/immunology , Down-Regulation/immunology , Humans , MAP Kinase Signaling System/immunology , Male , Mice , Mice, Inbred BALB C , Sepsis/chemically induced , Sepsis/drug therapy , Sepsis/immunology , Sepsis/pathology , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...