Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930289

ABSTRACT

The field of electronic skin has received considerable attention due to its extensive potential applications in areas including tactile sensing and health monitoring. With the development of electronic skin devices, electronic skin can be attached to the surface of human skin for long-term health monitoring, which makes comfort an essential factor that cannot be ignored in the design of electronic skin. Therefore, this paper proposes an assessment method for evaluating the comfort of electronic skin based on neurodynamic analysis. The holistic analysis framework encompasses the mechanical model of the skin, the modified Hodgkin-Huxley model for the transduction of stimuli, and the gate control theory for the modulation and perception of pain sensation. The complete process, from mechanical stimulus to the generation of pain perception, is demonstrated. Furthermore, the influence of different factors on pain perception is investigated. Sensation and comfort diagrams are provided to assess the mechanical comfort of electronic skin. The comfort assessment method proposed in this paper provides a theoretical basis when assessing the comfort of electronic skin.

2.
Micromachines (Basel) ; 15(4)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38675242

ABSTRACT

The problem that the thermal safety of flexible electronic devices is difficult to evaluate in real time is addressed in this study by establishing a BP neural network (GA-BPNN) temperature prediction model based on genetic algorithm optimisation. The model uses a BP neural network to fit the functional relationship between the input condition and the steady-state temperature of the equipment and uses a genetic algorithm to optimise the parameter initialisation problem of the BP neural network. To overcome the challenge of the high cost of obtaining experimental data, finite element analysis software is used to simulate the temperature results of the equipment under different working conditions. The prediction variance of the GA-BPNN model does not exceed 0.57 °C and has good robustness, as the model is trained according to the simulation data. The study conducted thermal validation experiments on the temperature prediction model for this flexible electronic device. The device reached steady state after 1200 s of operation at rated power. The error between the predicted and experimental results was less than 0.9 °C, verifying the validity of the model's predictions. Compared with traditional thermal simulation and experimental methods, this model can quickly predict the temperature with a certain accuracy and has outstanding advantages in computational efficiency and integrated application of hardware and software.

3.
Sensors (Basel) ; 20(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971799

ABSTRACT

Buckling stability of thin films on compliant substrates is universal and essential in stretchable electronics. The dynamic behaviors of this special system are unavoidable when the stretchable electronics are in real applications. In this paper, an analytical model is established to investigate the vibration of post-buckled thin films on a compliant substrate by accounting for the substrate as an elastic foundation. The analytical predictions of natural frequencies and vibration modes of the system are systematically investigated. The results may serve as guidance for the dynamic design of the thin film on compliant substrates to avoid resonance in the noise environment.

4.
Small ; 16(37): e2002484, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32696586

ABSTRACT

The modulation of terahertz plays a key role in realizing the tunable terahertz devices. The concept of flexible and stretchable electronics provides the possibility to dynamically modulate the terahertz with mechanical strain rather than additional electrical components. Here, the mechanical modulation of the terahertz transmission with a freestanding, skin-like, and highly stretchable metasurface is experimentally illustrated. The stretchable metasurface is fabricated by merely constructing an Al/PI mesh film consisting of serpentine-like unit cells, with total thickness of only 7 µm. With the flexibility realized by the extremely small thickness, the metasurface can be stretched, bended, and twisted, which provides the possibility to modulate terahertz transmission properties by the mechanical deformation of the metasurface. The terahertz time domain spectroscopy results indicate that the stretchable metasurface shows the band-stop frequency selective effect and the transmission of the terahertz wave can be modulated from 0.15 to 0.5 with applied external tensile strains up to 28%, while only 3.4% of the shift of the resonance frequency is observed. The mechanisms of the metasurface and the relation between the modulation effect and the structural mesh parameters are also discussed with the electromagnetic simulations and the LC equivalent circuit model.

SELECTION OF CITATIONS
SEARCH DETAIL
...