Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Res ; 24(1): 246, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828565

ABSTRACT

BACKGROUND: Although COVID-19 vaccines and their booster regimens protect against symptomatic infections and severe outcomes, there is limited evidence about their protection against asymptomatic and symptomatic infections in real-world settings, particularly when considering that the majority of SARS-CoV-2 Omicron infections were asymptomatic. We aimed to assess the effectiveness of the booster dose of inactivated vaccines in mainland China, i.e., Sinopharm (BBIBP-CorV) and Sinovac (CoronaVac), against Omicron infection in an Omicron BA.5 seeded epidemic. METHODS: Based on an infection-naive but highly vaccinated population in Urumqi, China, the study cohort comprised all 37,628 adults who had a contact history with individuals having SARS-CoV-2 infections, i.e., close contacts, between August 1 and September 7, 2022. To actively detect SARS-CoV-2 infections, RT-PCR tests were performed by local authorities on a daily basis for all close contacts, and a testing-positive status was considered a laboratory-confirmed outcome. The cohort of close contacts was matched at a ratio of 1:5 with the fully vaccinated (i.e., 2 doses) and booster vaccinated groups (i.e., 3 doses) according to sex, age strata, calendar date, and contact settings. Multivariate conditional logistic regression models were adopted to estimate the marginal effectiveness of the booster dose against Omicron BA.5 infection after adjusting for confounding variables. Subgroup analyses were performed to assess vaccine effectiveness (VE) in different strata of sex, age, the time lag from the last vaccine dose to exposure, and the vaccination status of the source case. Kaplan-Meier curves were employed to visualize the follow-up process and testing outcomes among different subgroups of the matched cohort. FINDINGS: Before matching, 37,099 adult close contacts were eligible for cohort enrolment. After matching, the 2-dose and 3-dose groups included 3317 and 16,051 contacts, and the proportions with Omicron infections were 1.03% and 0.62% among contacts in the 2-dose and 3-dose groups, respectively. We estimated that the adjusted effectiveness of the inactivated booster vaccine versus 2 doses against Omicron infection was 35.5% (95% CI 2.0, 57.5). The booster dose provided a higher level of protection, with an effectiveness of 60.2% (95% CI 22.8, 79.5) for 15-180 days after vaccination, but this VE decreased to 35.0% (95% CI 2.8, 56.5) after 180 days. Evidence for the protection of the booster dose was detected among young adults aged 18-39 years, but was not detected for those aged 40 years or older. INTERPRETATION: The receipt of the inactivated vaccine booster dose was associated with a significantly lower Omicron infection risk, and our findings confirmed the vaccine effectiveness (VE) of booster doses against Omicron BA.5 variants. Given the rapid evolution of SARS-CoV-2, we highlight the importance of continuously monitoring the protective performance of vaccines against the genetic variants of SARS-CoV-2, regardless of existing vaccine coverage.


Subject(s)
COVID-19 Vaccines , COVID-19 , Young Adult , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , SARS-CoV-2
2.
J Glob Health ; 13: 06018, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37199483

ABSTRACT

Background: From August to September 2022, Urumqi, the capital of the Xinjiang Uygur Autonomous Region in China, faced its largest COVID-19 outbreak caused by the emergence of the SARS-CoV-2 Omicron BA.5.2 variants. Although the superspreading of COVID-19 played an important role in triggering large-scale outbreaks, little was known about the superspreading potential and heterogeneity in the transmission of Omicron BA.5 variants. Methods: In this retrospective observational, contact tracing study, we identified 1139 laboratory-confirmed COVID-19 cases of Omicron BA.5.2 variants, and 51 323 test-negative close contacts in Urumqi from 7 August to 7 September 2022. By using detailed contact tracing information and exposure history of linked case-contact pairs, we described stratification in contact and heterogeneity in transmission across different demographic strata, vaccine statuses, and contact settings. We adopted beta-binomial models to characterise the secondary attack rate (SAR) distribution among close contacts and modelled COVID-19 transmission as a branching process with heterogeneity in transmission governed by negative binomial models. Results: After the city lockdown, the mean case cluster size decreased from 2.0 (before lockdown) to 1.6, with decreased proportions of contacts in workplace and community settings compared with household settings. We estimated that 14% of the most infectious index cases generated 80% transmission, whereas transmission in the community setting presented the highest heterogeneity, with 5% index cases seeding 80% transmission. Compared with zero, one, and two doses of inactivated vaccine (Sinopharm), index cases with three doses of vaccine had a lower risk of generating secondary cases in terms of the reproduction number. Contacts of female cases, cases with ages 0-17 years, and household settings had relatively higher SAR. Conclusions: In the context of intensive control measures, active case detection, and relatively high vaccine coverage, but with an infection-naive population, our findings suggested high heterogeneity in the contact and transmission risks of Omicron BA.5 variants across different demographic strata, vaccine statuses, and contact settings. Given the rapid evolution of SARS-CoV-2, investigating the distribution of transmission not only helped promote public awareness and preparedness among high-risk groups, but also highlighted the importance of continuously monitoring the transmission characteristics of genetic variants of SARS-CoV-2.


Subject(s)
COVID-19 , Humans , Female , COVID-19/epidemiology , SARS-CoV-2/genetics , Retrospective Studies , Communicable Disease Control , China/epidemiology
3.
J Healthc Eng ; 2021: 6128260, 2021.
Article in English | MEDLINE | ID: mdl-34567483

ABSTRACT

Norovirus monitoring and early warning can be used for diagnosis without etiological testing, and the treatment of this disease does not require the antibiotics. It often occurs in preschool children and affects their growth and development, so the coping measures for this disease are more prevention than treatment. In this study, the clinical data of 2133 children with diarrhea were collected. Based on the artificial intelligence (AI) algorithm of wavelet transform, a related model for data mining and processing of children's intestinal ultrasound images and stool specimens was constructed. Then, the norovirus infection trend was warned based on the wavelet analysis algorithm model. The results showed that the intestinal ultrasound image processed by the wavelet transform algorithm was clearer. The positive detection rate of norovirus in children with clinical diarrhea was as high as 59%, and the children had different degrees of body damage, of which the probability of compensatory metabolic acidosis was the highest. The epidemiological analysis found that children with norovirus infection were mainly concentrated in the age group under 2 years old and over 5 years old and showed a peak of infection in December. In summary, the intelligent algorithm based on wavelet transform can realize the noise reduction of intestinal ultrasound, and it should protect children with susceptible age and susceptible seasons to reduce the clinical infection rate of norovirus.


Subject(s)
Norovirus , Wavelet Analysis , Artificial Intelligence , Child, Preschool , Data Mining , Humans , Infant , Technology
5.
PLoS One ; 12(8): e0183720, 2017.
Article in English | MEDLINE | ID: mdl-28841693

ABSTRACT

Potent adjuvant can improve the effectiveness of vaccines and reduce the antigen doses required for initiating the protective immunity. In this study, we identified that aqueous extract of Artemisia rupestris L. (AEAR) could be employed as an efficient adjuvant for influenza virus vaccine (V) to enhance immune responses and reduce the antigen doses required for initiating immunity, without compromising the immune response. ICR mice were subcutaneously co-administrated with V combined with different concentrations of AEAR demonstrated that 300 µg AEAR could significantly improve hemagglutination inhibition (HI) and increase IgG antibody titers in serum (P<0.05) and the population of CD4+CD44+ and CD8+CD44+ (P<0.05). Next, 300 µg AEAR combined with different doses of V in vivo markedly increased HI and specific IgG antibody level(P<0.05). It also significantly increased the amount of CD4+ and CD8+ T cells, CD4+CD44+ and CD8+CD44+ T cells (P<0.05), improved lymphocyte proliferation, the secretion of CD4+IL-4, CD4+IFN-γ and CD8+IFN-γ (P<0.05), and the killing efficacy of cytotoxic T lymphocyte (CTL) (P<0.05). Furthermore, the combination increased the expression of major histocompatibility complex-II (MHC-II) and co-stimulatory molecules including CD40, CD80, and CD86 on dendritic cells (DCs), and downregulated the expression of CD25+Foxp3+Treg cells (P<0.05). No significant difference was observed between high-dose V and low-dose AEAR-V (10-fold lower) vaccination group (P>0.05), indicating a 10-fold reduction of antigen required for V vaccine administration. In conclusion, this study demonstrated that AEAR, as an adjuvant for influenza vaccine, could stimulate potent humoral and cellular immune responses and reduce the antigen dose required for effective vaccination, which were mediated by promoting DCs activation and repressing Treg expression.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antigens/administration & dosage , Artemisia/chemistry , Plant Extracts/pharmacology , Cell Proliferation , Cytokines/metabolism , Cytotoxicity, Immunologic , Dose-Response Relationship, Immunologic , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G/blood , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...