Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 113: 1062-1072, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29540302

ABSTRACT

Chitooligosaccharide (COS) has the characteristic of antioxidant and antibacterial effects. To improve the properties of silk fibroin (SF), COS was enzymatically grafted onto SF membranes using a laccase from Trametes versicolor. d-Glucosamine hydrochloride (GAH) and p-hydroxyphenylacetamide (PHAD), as the model compound of COS and tyrosine residues in SF were utilized to disclose the grafting mechanism, respectively. The data from UPLC-TQD and GPC analysis implied that laccase might catalyze the oxidation of PHAD and led to the formation of self-polymerized products. FTIR and 1H NMR results verified the occurrence of the laccase-assisted reactions between COS and PHAD. For the fibroin samples with different treatments, incubation with laccase alone led to remarkable increase in the molecular weight of SF, mainly owing to the efficient self-crosslinks of the fibroin chains. For the COS-grafted SF membrane, there was no obvious change in the thermal behavior, while the antioxidant and antibacterial properties were evidently improved when compared to that of the untreated. Meanwhile, biocompatibility of the COS grafted SF membrane was acceptable according to the cell viability of NIH/3T3 cells. The present work provides a novel method for preparation of the multifunctional fibroin-based biomaterials.


Subject(s)
Anti-Bacterial Agents/chemistry , Biocatalysis , Biocompatible Materials/chemistry , Chitin/analogs & derivatives , Fibroins/chemistry , Laccase/metabolism , Acetamides/chemistry , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Chitin/chemistry , Chitosan , Escherichia coli/drug effects , Fibroins/pharmacology , Glucosamine/chemistry , Membranes, Artificial , Oligosaccharides , Particle Size , Phenols/chemistry , Trametes/enzymology
5.
Bioorg Med Chem Lett ; 18(4): 1318-22, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18242983

ABSTRACT

Comprehensive SAR studies were undertaken in the 3,4-diaminocyclobut-3-ene-1,2-dione class of CXCR2/CXCR1 receptor antagonists to explore the role of the heterocycle on chemokine receptor binding affinities, functional activity, as well as oral exposure in rat. The nature of the heterocycle as well as the requisite substitution pattern around the heterocycle was shown to have a dramatic effect on the overall biological profile of this class of compounds. The furyl class, particularly the 4-halo adducts, was found to possess superior binding affinities for both the CXCR2 and CXCR1 receptors, functional activity, as well as oral exposure in rat versus other heterocyclic derivatives.


Subject(s)
Cyclobutanes/chemistry , Cyclobutanes/pharmacology , Diamines/chemistry , Diamines/pharmacology , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Animals , Cell Line , Cyclobutanes/chemical synthesis , Diamines/chemical synthesis , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Mice , Stereoisomerism , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 18(1): 228-31, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-18006311

ABSTRACT

A series of novel and potent 3,4-diamino-2,5-thiadiazole-1-oxides were prepared and found to show excellent binding affinities for CXCR2 and CXCR1 receptors and excellent inhibitory activity of Gro-alpha and IL-8 mediated in vitro hPMN MPO release of CXCR2 and CXCR1 expressing cell lines. On the other hand, a closely related 3,4-diamino-2,5-thiadiazole-dioxide did not show functional activity despite its excellent binding affinities for CXCR2 and CXCR1 in membrane binding assays. A detailed SAR has been discussed in these two closely related structures.


Subject(s)
Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Animals , Chemokine CXCL1/chemistry , Chemokine CXCL1/pharmacology , Chemotactic Factors/chemistry , Chemotactic Factors/pharmacology , Humans , Interleukin-8/chemistry , Interleukin-8/pharmacology , Kinetics , Neutrophils/drug effects , Neutrophils/enzymology , Oxides/chemical synthesis , Oxides/chemistry , Oxides/pharmacokinetics , Oxides/pharmacology , Peroxidase/metabolism , Rats , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/chemistry , Thiadiazoles/pharmacokinetics , Thiadiazoles/pharmacology
7.
J Pharmacol Exp Ther ; 322(2): 486-93, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17496165

ABSTRACT

Sch527123 [2-hydroxy-N,N-dimethyl-3-[[2-[[1(R)-(5-methyl-2-furanyl)propyl]amino]-3,4-dioxo-1-cyclobuten-1-yl]amino]ben-zamide] is a potent, selective antagonist of the human CXCR1 and CXCR2 receptors (Gonsiorek et al., 2007). Here we describe its pharmacologic properties at rodent CXCR2 and at the CXCR1 and CXCR2 receptors in the cynomolgus monkey, as well as its in vivo activity in models demonstrating prominent pulmonary neutrophilia, goblet cell hyperplasia, and mucus production. Sch527123 bound with high affinity to the CXCR2 receptors of mouse (K(d) = 0.20 nM), rat (K(d) = 0.20 nM), and cynomolgus monkey (K(d) = 0.08 nM) and was a potent antagonist of CXCR2-mediated chemotaxis (IC(50) approximately 3-6 nM). In contrast, Sch527123 bound to cynomolgus CXCR1 with lesser affinity (K(d) = 41 nM) and weakly inhibited cynomolgus CXCR1-mediated chemotaxis (IC(50) approximately 1000 nM). Oral treatment with Sch527123 blocked pulmonary neutrophilia (ED(50) = 1.2 mg/kg) and goblet cell hyperplasia (32-38% inhibition at 1-3 mg/kg) in mice following the intranasal lipopolysaccharide (LPS) administration. In rats, Sch527123 suppressed the pulmonary neutrophilia (ED(50) = 1.8 mg/kg) and increase in bronchoalveolar lavage (BAL) mucin content (ED(50) =<0.1 mg/kg) induced by intratracheal (i.t.) LPS. Sch527123 also suppressed the pulmonary neutrophilia (ED(50) = 1.3 mg/kg), goblet cell hyperplasia (ED(50) = 0.7 mg/kg), and increase in BAL mucin content (ED(50) = <1 mg/kg) in rats after i.t. administration of vanadium pentoxide. In cynomolgus monkeys, Sch527123 reduced the pulmonary neutrophilia induced by repeat bronchoscopy and lavage (ED(50) = 0.3 mg/kg). Therefore, Sch527123 may offer benefit for the treatment of inflammatory lung disorders in which pulmonary neutrophilia and mucus hypersecretion are important components of the underlying disease pathology.


Subject(s)
Benzamides/therapeutic use , Bronchitis/drug therapy , Chemotaxis, Leukocyte/drug effects , Cyclobutanes/therapeutic use , Goblet Cells/pathology , Hyperplasia/drug therapy , Mucus/metabolism , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/therapeutic use , Benzamides/metabolism , Benzamides/pharmacology , Biological Availability , Bronchitis/chemically induced , Bronchitis/metabolism , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoscopy , Cell Line , Cell Membrane/metabolism , Chemokines, CXC/analysis , Chemokines, CXC/metabolism , Chemotaxis/drug effects , Cyclobutanes/metabolism , Cyclobutanes/pharmacology , Disease Models, Animal , Hyperplasia/pathology , Lipopolysaccharides/pharmacology , Lung/metabolism , Lung/pathology , Macaca fascicularis , Male , Mice , Mice, Inbred BALB C , Mucins/analysis , Mucins/metabolism , Neutrophils/pathology , Rats , Rats, Sprague-Dawley , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Vanadium Compounds/pharmacology
8.
J Pharmacol Exp Ther ; 322(2): 477-85, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17496166

ABSTRACT

In neutrophils, growth-related protein-alpha (CXCL1) and interleukin-8 (CXCL8), are potent chemoattractants (Cytokine 14:27-36, 2001; Biochemistry 42:2874-2886, 2003) and can stimulate myeloperoxidase release via activation of the G protein-coupled receptors CXCR1 and CXCR2. The role of CXCR1 and CXCR2 in the pathogenesis of inflammatory responses has encouraged the development of small molecule antagonists for these receptors. The data presented herein describe the pharmacology of 2-hydroxy-N,N-dimethyl-3-{2-[[(R)-1-(5-methyl-furan-2-yl)-propyl]amino]-3,4-dioxo-cyclobut-1-enylamino}-benzamide (Sch527123), a novel antagonist of both CXCR1 and CXCR2. Sch527123 inhibited chemokine binding to (and activation of) these receptors in an insurmountable manner and, as such, is categorized as an allosteric antagonist. Sch527123 inhibited neutrophil chemotaxis and myeloperoxidase release in response to CXCL1 and CXCL8 but had no effect on the response of these cells to C5a or formyl-methionyl-leucyl-phenylalanine. The pharmacological specificity of Sch527123 was confirmed by testing in a diversity profile against a panel of enzymes, channels, and receptors. To measure compound affinity, we characterized [(3)H]Sch527123 in both equilibrium and nonequilibrium binding analyses. Sch527123 binding to CXCR1 and CXCR2 was both saturable and reversible. Although Sch527123 bound to CXCR1 with good affinity (K(d) = 3.9 +/- 0.3 nM), the compound is CXCR2-selective (K(d) = 0.049 +/- 0.004 nM). Taken together, our data show that Sch527123 represents a novel, potent, and specific CXCR2 antagonist with potential therapeutic utility in a variety of inflammatory conditions.


Subject(s)
Benzamides/pharmacology , Cyclobutanes/pharmacology , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Animals , Benzamides/chemistry , Binding, Competitive/drug effects , Calcium Signaling/drug effects , Cell Line , Cell Membrane/metabolism , Chemotaxis/drug effects , Complement C5a/pharmacology , Cyclobutanes/chemistry , Dose-Response Relationship, Drug , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans , Interleukin-8/metabolism , Mice , Molecular Structure , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophils/cytology , Neutrophils/drug effects , Protein Binding/drug effects , Radioligand Assay , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Signal Transduction/drug effects
9.
Bioorg Med Chem Lett ; 17(13): 3778-83, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17459706

ABSTRACT

A novel series of cyclobutenedione centered C(4)-alkyl substituted furanyl analogs was developed as potent CXCR2 and CXCR1 antagonists. Compound 16 exhibits potent inhibitory activities against IL-8 binding to the receptors (CXCR2 Ki=1 nM, IC(50)=1.3 nM; CXCR1 Ki=3 nM, IC(50)=7.3 nM), and demonstrates potent inhibition against both Gro-alpha and IL-8 induced hPMN migration (chemotaxis: CXCR2 IC(50)=0.5 nM, CXCR1 IC(50)=37 nM). In addition, 16 has shown good oral pharmacokinetic profiles in rat, mouse, monkey, and dog.


Subject(s)
Chemistry, Pharmaceutical/methods , Furans/chemistry , Furans/pharmacokinetics , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Administration, Oral , Animals , Area Under Curve , Dogs , Drug Design , Furans/chemical synthesis , Humans , Inhibitory Concentration 50 , Interleukin-8/chemistry , Kinetics , Mice , Rats
10.
J Biol Chem ; 282(16): 11658-66, 2007 Apr 20.
Article in English | MEDLINE | ID: mdl-17197447

ABSTRACT

Functional interleuin-8 (IL-8) receptors (IL-8RA and IL-8RB: CXCR1 and CXCR2, respectively) have been described in human, monkey, dog, rabbit, and guinea pig. Although three IL-8R homologues have been found in rat, only one of these, rat CXCR2, appears to be functional based on responsiveness to ligands. Similarly, CXC chemokines induce biological responses through the murine homolog of CXCR2, but the identification of functional rodent CXCR1 homologues has remained elusive. We have identified and characterized the mouse CXCR1 homologue (mCXCR1). Murine CXCR1 shares 68 and 88% amino acid identity with its human and rat counterparts, respectively. Similar to the tissue distribution pattern of rat CXCR1, we found murine CXCR1 mRNA expression predominantly in lung, stomach, bone marrow, and leukocyte-rich tissues. In contrast to previous reports, we determined that mCXCR1 is a functional receptor. We show predominant engagement of this receptor by mouse GCP-2/CXCL6, human GCP-2, and IL-8/CXCL8 by binding, stimulation of GTPgammaS exchange, and chemotaxis of mCXCR1-transfected cells. Furthermore, murine CXCR1 is not responsive to the human CXCR2 ligands ENA-78/CXCL5, NAP-2/CXCL7, GRO-alpha, -beta, -gamma/CXCL1-3, or rat CINC-1-3. In addition, we show concomitant elevation of mCXCR1 and its proposed major ligand, GCP-2, positively correlated with paw swelling in murine collagen-induced arthritis. This report represents the first description of a functional CXCR1-like receptor in rodents.


Subject(s)
Chemokines, CXC/metabolism , Interleukin-8/metabolism , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/physiology , Amino Acid Sequence , Animals , Arthritis, Experimental/metabolism , Chemokine CXCL6 , Cloning, Molecular , Collagen/metabolism , Disease Models, Animal , Humans , Mice , Molecular Sequence Data , RNA, Messenger/metabolism , Rats , Sequence Homology, Amino Acid
11.
J Med Chem ; 49(26): 7603-6, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181143

ABSTRACT

Structure-activity studies on lead cyclobutenedione 3 led to the discovery of 4 (SCH 527123), a potent, orally bioavailable CXCR2/CXCR1 receptor antagonist with excellent cell-based activity. Compound 4 displayed good oral bioavailability in rat and may be a potential therapeutic agent for the treatment of various inflammatory diseases.


Subject(s)
Benzamides/pharmacology , Cyclobutanes/pharmacology , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Administration, Oral , Animals , Benzamides/administration & dosage , Benzamides/chemical synthesis , Biological Availability , Cyclobutanes/administration & dosage , Cyclobutanes/chemical synthesis , Molecular Structure , Rats , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/metabolism , Structure-Activity Relationship
12.
J Pharmacol Exp Ther ; 316(2): 780-8, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16258021

ABSTRACT

The expression of the cannabinoid peripheral cannabinoid receptor (CB(2)) receptor on peripheral immune cells suggests that compounds specific for CB(2) might be effective anti-inflammatory agents. In this report, we present the initial biological profiling of a novel triaryl bis-sulfone, Sch.336 (N-[1(S)-[4-[[4-methoxy-2-[(4-methoxyphenyl)sulfonyl]phenyl]-sulfonyl]phenyl]ethyl]methanesulfonamide), which is selective for the human cannabinoid CB(2) receptor (hCB(2)). Sch.336 is an inverse agonist at hCB(2), as shown by its ability to decrease guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding to membranes containing hCB(2), by the ability of GTPgammaS to left-shift Sch.336 binding to hCB(2) in these membranes, and by the compound's ability to increase forskolin-stimulated cAMP levels in CHO cells expressing hCB(2). In these systems, Sch.336 displays a greater potency than that reported for the CB(2)-selective dihydropyrazole, SR144528 (N-[(1S)-endo-1,3,3-trimethylbicyclo [2.2.1]heptan2-yl]-5-(4-chloro-3-methylphenyl)-1-[(4-methylphenyl)methyl]-1H-pyrazole-3-carboxamide). In vitro, Sch.336 impairs the migration of CB(2)-expressing recombinant cell lines to the cannabinoid agonist 2-arachidonylglycerol. In vivo, the compound impairs migration of cells to cannabinoid agonist HU210 [(6aR)-trans-3-(1,1-dimethylheptyl)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6-dimethyl-6H-dibenzo [b,d] pyran-9-methanol]. Oral administration of the Sch.336 significantly inhibited leukocyte trafficking in several rodent in vivo models, induced either by specific chemokines or by antigen challenge. Finally, oral administration of Sch.336 blocked ovalbumin-induced lung eosinophilia in mice, a disease model for allergic asthma. We conclude that selective cannabinoid CB(2) inverse agonists may serve as novel immunomodulatory agents in the treatment of a broad range of acute and chronic inflammatory disorders in which leukocyte recruitment is a hallmark of disease pathology.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Camphanes/pharmacology , Cannabinoids/pharmacology , Chemotaxis, Leukocyte/drug effects , Leukocytes, Mononuclear/drug effects , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB2/agonists , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , CHO Cells , Camphanes/therapeutic use , Cannabinoids/therapeutic use , Cell Membrane/drug effects , Cell Membrane/metabolism , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Female , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans , Hypersensitivity, Delayed/drug therapy , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred Strains , Protein Binding , Pulmonary Eosinophilia/drug therapy , Pyrazoles/therapeutic use , Receptor, Cannabinoid, CB2/biosynthesis
13.
Br J Pharmacol ; 142(5): 851-60, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15197107

ABSTRACT

Sphingosine-1-phosphate (S1P) is a bioactive lipid that affects a variety of cellular processes through both its actions as a second messenger and via activation of a family of G protein-coupled receptors (S1P(1-5)). The study of S1P receptor pharmacology, particularly S1P(4), has been hindered by the lack of high-affinity radioligands with good specific activity. The studies presented herein characterize [(3)H]DH-S1P as a stable, high-affinity radioligand for S1P(4) pharmacology. Using a transfected Ba/F3 cell line selected for high hS1P(4) surface expression, we compared the consequences of different cellular backgrounds and commercial sources of sphingophospholipids on S1P(4) characterization. The development and subsequent use of the assay described has enabled us to extensively and definitively characterize the pharmacology of the human S1P(4) receptor.


Subject(s)
Phospholipids/pharmacology , Receptors, Lysosphingolipid/drug effects , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Animals , CHO Cells , Cell Membrane/drug effects , Cell Membrane/metabolism , Cloning, Molecular , Cricetinae , DNA, Complementary/biosynthesis , Flow Cytometry , Humans , Ligands , Magnetic Resonance Spectroscopy , Radioligand Assay , Receptors, Cell Surface/metabolism , Receptors, Lysosphingolipid/biosynthesis , Receptors, Lysosphingolipid/genetics , Reverse Transcriptase Polymerase Chain Reaction
14.
Arch Biochem Biophys ; 425(1): 51-7, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15081893

ABSTRACT

Gallic acid (GA) and several gallate derivatives were identified as inhibitors of fucosyltransferase VII (FucT VII). The inhibition by GA and (-)-epigallocatechin gallate (EGCG) is time-dependent and irreversible. GA and EGCG showed inhibition with IC(50) of 60 and 700 nM, respectively, after pre-incubation with FucT VII in the presence of MnCl(2). Absence of MnCl(2) results in significantly weaker inhibition. Complexation of Mn(2+) with GA, EGCG, and gallate esters was observed. Such complexation, however, is not rate-limiting for the inhibition of FucT VII. Therefore, time-dependent inhibition of fucosyltransferases by GA and EGCG is likely due to the slow inactivation by the inhibitors or Mn-inhibitor complex. Although Mg(2+) or Ca(2+) can replace Mn(2+) for FucT VII activation, none forms a complex with GA or EGCG and hence results in weaker inhibition of FucT VII. GA and EGCG also inhibit FucT IV and alpha2,3-(N)-sialyltransferase in the low micromolar range. The structure-function divergence could be observed, as EGCG, but not GA or gallate esters, inhibits Zn(2+) containing metalloproteases such as TNFalpha convertase, matrix metalloproteases 2 and 7.


Subject(s)
Catechin/analogs & derivatives , Fucosyltransferases/antagonists & inhibitors , Gallic Acid/pharmacology , Catechin/metabolism , Catechin/pharmacology , Ellagic Acid/metabolism , Ellagic Acid/pharmacology , Enzymes/metabolism , Fucosyltransferases/metabolism , Gallic Acid/analogs & derivatives , Gallic Acid/metabolism , Humans , Manganese/metabolism
15.
J Pharmacol Exp Ther ; 310(1): 291-300, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15028780

ABSTRACT

Two genes with high sequence homology to human CXCR1 (hCXCR1) and CXCR2 (hCXCR2) were cloned from blood of cynomolgus monkey (Macaca fascicularis). Comparison of the expression pattern of these receptors in different species demonstrated that, like in humans, cynomolgus CXCR1 (cCXCR1) and CXCR2 (cCXCR2) are highly expressed in blood. Membranes from transfected BaF3 cells expressing cCXCR1 bind interleukin (IL)-8 with an affinity similar to hCXCR1 (Kd values, 170 +/- 87 and 103 +/- 37 pM, respectively) and show low binding affinity to Gro-alpha. Cynomolgus CXCR2 also binds hIL-8 but with somewhat higher affinity than the hCXCR2 (46 +/- 28 and 220 +/- 14 pM, respectively). Surprisingly, cCXCR2 has a reduced binding affinity to hGro-alpha (3.7 +/- 2.2 nM), a specific ligand of hCXCR2 (540 +/- 140 pM). Furthermore, the CXCR2-specific antagonist SB225002 [N-(2-hydroxy-4-nitrophenyl)-N'-(2-bromophenyl)urea] is 10-fold more potent in inhibiting IL-8 binding to hCXCR2 than to cCXCR2, suggesting that some of the observed differences in the amino acid sequences of the human and monkey receptor affect ligand binding sites or the conformation of the receptor. Both cynomolgus receptors were functionally active in inducing guanosine 5'-O-(3-thio)triphosphate exchange on membranes in response to IL-8 and Gro-alpha and in mediating chemotactic activity of recombinant BA/F3 cells in response to IL-8 and Gro-alpha. These results identify the products of the novel cynomolgus genes as functional homologs of hCXCR1 and hCXCR2.


Subject(s)
Macaca fascicularis/genetics , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8B/genetics , Amino Acid Sequence , Animals , Gene Expression , Humans , Interleukin-8/pharmacology , Molecular Sequence Data , Receptors, Interleukin-8A/chemistry , Receptors, Interleukin-8A/drug effects , Receptors, Interleukin-8B/chemistry , Receptors, Interleukin-8B/drug effects , Sequence Homology, Amino Acid , Species Specificity
16.
Mol Pharmacol ; 63(2): 342-50, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12527805

ABSTRACT

Extensive characterization of adenosine receptors expressed by human monocyte-derived dendritic cells (MDDCs) was performed with quantitative polymerase chain reaction, radioligand binding, and calcium signaling. Transcript for the A3 adenosine receptor was elevated more than 100-fold in immature MDDCs compared with monocyte precursors. A3 receptor transcript was substantially diminished, and A2A receptor transcript increased, by lipopolysaccharide maturation of MDDCs. Saturation binding of N(6)-(3-[(125)I]iodo-4-aminobenzyl)-adenosine-5'-N-methyluronamide ([(125)I]AB-MECA) to membranes from immature MDDCs yielded B(max) of 298 fmol/mg of protein and K(D) of 0.7 nM. Competition against [(125)I]AB-MECA binding confirmed the site to be the A3 receptor. Adenosine elicited pertussis toxin-sensitive calcium responses with EC(50) values ranging as low as 2 nM. The order of potency for related agonists was N(6)-(3-iodobenzyl)-adenosine-5'-N-methylcarboxamide (IB-MECA) >/= I-AB-MECA > 2Cl-IB-MECA >/= adenosine > 2-[p-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxyamidoadenosine (CGS21680). The order of efficacy was adenosine >/= CGS21680 > IB-MECA >/= I-AB-MECA > 2Cl-IB-MECA. Calcium responses to 2Cl-IB-MECA and CGS21680, and the lower range of adenosine concentrations, were completely blocked by 10 nM N-(2-methoxyphenyl)-N-[2-(3-pyridyl)quinazolin-4-yl]urea (VUF5574) but not by 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261) or 8-cyclopentyl-1,3-dipropylxanthine. Pretreatment with 100 nM 2Cl-IB-MECA eliminated responses to CGS21680 but not to monocyte inhibitory protein-1alpha. For comparison, dose-response functions were obtained from double-recombinant human embryonic kidney 293 cells expressing the human A3 receptor and a chimeric Galphaq-i3 protein, which was required to establish A3-mediated calcium signaling. The pharmacological profile of calcium signaling elicited by adenosine-related agonists in the double-recombinant cells was essentially identical to that obtained from immature MDDCs. Our results provide an extensive analysis of A3-mediated calcium signaling and unequivocally identify immature MDDCs as native expressers of the human A3 receptor.


Subject(s)
Adenosine/analogs & derivatives , Adenosine/pharmacology , Calcium/metabolism , Dendritic Cells/drug effects , Receptors, Purinergic P1/metabolism , Adenosine/chemistry , Binding Sites , Cell Membrane/metabolism , Cells, Cultured , Dendritic Cells/metabolism , Humans , Iodine Radioisotopes , Monocytes/cytology , Purinergic P1 Receptor Agonists , Purinergic P1 Receptor Antagonists , Receptor, Adenosine A3
17.
J Pharmacol Exp Ther ; 301(2): 705-13, 2002 May.
Article in English | MEDLINE | ID: mdl-11961076

ABSTRACT

We have identified an orphan G protein-coupled receptor, SP174, that shares a high degree of homology with the recently described ADP receptor P2Y(12). mRNA for SP174 is abundant in the brain and in cells of the immune system. In the present study, we demonstrate that SP174 is also a receptor for ADP, which is coupled to Galphai. ADP potently stimulates SP174 with an EC(50) of 60 nM, and other related nucleotides are active as well, with a rank order of potency 2-methylthio-ADP tetrasodium = adenosine 5'-O-2-(thio)diphosphate = 2-methylthio-ATP tetrasodium > ADP > AP3A >ATP > IDP. This pharmacological profile is similar to that for P2Y(12). We have also identified the murine homolog of SP174, which exhibits 75% homology to the human receptor. ADP is also a potent agonist at the murine receptor, and its pharmacological profile is similar to its human counterpart, but ADP and related nucleotides are more potent at the murine receptor than the human receptor. In keeping with the general nomenclature for the purinergic receptors, we propose designating this novel receptor P2Y(13).


Subject(s)
Heterotrimeric GTP-Binding Proteins/metabolism , Membrane Proteins , Receptors, Purinergic P2/isolation & purification , Amino Acid Sequence , Animals , Cloning, Molecular , Gene Expression Profiling , Humans , Ligands , Mice , Molecular Sequence Data , Phylogeny , RNA, Messenger/biosynthesis , Receptors, Purinergic P2/chemistry , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2Y12 , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...