Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
2.
Mol Ther Oncol ; 32(1): 200787, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38596290

ABSTRACT

Glioblastoma, the most common primary brain tumor, has a 6.8% survival rate 5 years post diagnosis. Our team developed an oncolytic adenovirus with an OX-40L expression cassette named Delta-24-RGDOX. While studies have revealed the interaction between the gut microbiota and immunotherapy agents, there are no studies linking the gut microbiota with viroimmunotherapy efficacy. We hypothesize that gut bacterial signatures will be associated with oncolytic viral therapy efficacy. To test this hypothesis, we evaluated the changes in gut microbiota in two mouse cohorts: (1) GSC-005 glioblastoma-bearing mice treated orally with indoximod, an immunotherapeutic agent, or with Delta-24-RGDOX by intratumoral injection and (2) a mouse cohort harboring GL261-5 tumors used to mechanistically evaluate the importance of CD4+ T cells in relation to viroimmunotherapy efficacy. Microbiota assessment indicated significant differences in the structure of the gut bacterial communities in viroimmunotherapy-treated animals with higher survival compared with control or indoximod-treated animals. Moreover, viroimmunotherapy-treated mice with prolonged survival had a higher abundance of Bifidobacterium. The CD4+ T cell depletion was associated with gut dysbiosis, lower mouse survival, and lower antitumor efficacy of the therapy. These findings suggest that microbiota modulation along the gut-glioma axis contributes to the clinical efficacy and patient survival of viroimmunotherapy treated animals.

3.
Mol Ther ; 32(3): 722-733, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38311852

ABSTRACT

Oncolytic viruses are a promising treatment for patients with high-grade gliomas, but neutralizing antibodies can limit their efficacy in patients with prior virus exposure or upon repeated virus injections. Data from a previous clinical trial using the oncolytic adenovirus Delta-24-RGD showed that generation of anti-viral neutralizing antibodies may affect the long-term survival of glioma patients. Past studies have examined the effects of neutralizing antibodies during systemic virus injections, but largely overlooked their impact during local virus injections into the brain. We found that immunoglobulins colocalized with viral proteins upon local oncolytic virotherapy of brain tumors, warranting a strategy to prevent virus neutralization and maximize oncolysis. Thus, we generated a chimeric virus, Delta-24-RGD-H43m, by replacing the capsid protein HVRs from the serotype 5-based Delta-24-RGD with those from the rare serotype 43. Delta-24-RGD-H43m evaded neutralizing anti-Ad5 antibodies and conferred a higher rate of long-term survival than Delta-24-RGD in glioma-bearing mice. Importantly, Delta-24-RGD-H43m activity was significantly more resistant to neutralizing antibodies present in sera of glioma patients treated with Delta-24-RGD during a phase 1 clinical trial. These findings provide a framework for a novel treatment of glioma patients that have developed immunity against Delta-24-RGD.


Subject(s)
Brain Neoplasms , Glioma , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Animals , Mice , Adenoviridae/genetics , Antibodies, Neutralizing , Glioma/therapy , Glioma/pathology , Brain Neoplasms/pathology , Oncolytic Viruses/genetics , Antibodies, Viral , Oligopeptides/therapeutic use
4.
Antib Ther ; 7(1): 13-27, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38235377

ABSTRACT

The immune checkpoint leukocyte immunoglobulin-like receptor B4 (LILRB4) is found specifically on the cell surface of acute monocytic leukemia (monocytic AML), an aggressive and common subtype of AML. We have developed a humanized monoclonal IgG1 LILRB4-blocking antibody (h128-3), which improved immune regulation but reduced cell surface expression of LILRB4 in monocytic AML models by 40-60%. Interestingly, most of this effect was neutralized by mutation of the Fc region of the antibody (h128-3/N297A), which prevents interaction with Fc gamma receptors (FcγRs). This suggested that there is FcγR-dependent antigenic modulation underlying h128-3's effects, a mechanism known to alter the function of antibodies targeting B-cell malignancies. We disrupted the Fc-FcγR interaction pharmacologically and with stable CRISPR-Cas9-mediated genetic knockout of FcγRs in monocytic AML cell lines to investigate the role of FcγR-dependent antigenic modulation in the regulation of LILRB4 by h128-3. When FcγRI is inhibited or removed from the surface of monocytic AML cells, h128-3 cannot optimally perform its blocking function, resulting in activation of the LILRB4 inhibitory receptor and leading to a 15-25% decrease in T-cell-mediated cytotoxicity in vitro. In the absence of FcγRI, scaffolding by FcγRIIa allows h128-3 to maintain LILRB4-blocking function. Here we define a FcγR-dependent antigenic modulation mechanism underlying the function of an immunoreceptor blocking antibody for the first time in myeloid malignancy. This research will facilitate the development of safe, precision-targeted antibody therapeutics in myeloid malignancies with greater potency and efficacy.

5.
Cancer Res Commun ; 3(6): 1118-1131, 2023 06.
Article in English | MEDLINE | ID: mdl-37379361

ABSTRACT

Cancer cell heterogeneity and immunosuppressive tumor microenvironment (TME) pose a challenge in treating solid tumors with adoptive cell therapies targeting limited tumor-associated antigens (TAA), such as chimeric antigen receptor T-cell therapy. We hypothesize that oncolytic adenovirus Delta-24-RGDOX activates the TME and promote antigen spread to potentiate the abscopal effect of adoptive TAA-targeting T cells in localized intratumoral treatment. Herein, we used C57BL/6 mouse models with disseminated tumors derived from B16 melanoma cell lines to assess therapeutic effects and antitumor immunity. gp100-specific pmel-1 or ovalbumin (OVA)-specific OT-I T cells were injected into the first subcutaneous tumor, followed by three injections of Delta-24-RGDOX. We found TAA-targeting T cells injected into one subcutaneous tumor showed tumor tropism. Delta-24-RGDOX sustained the systemic tumor regression mediated by the T cells, leading to improved survival rate. Further analysis revealed that, in mice with disseminated B16-OVA tumors, Delta-24-RGDOX increased CD8+ leukocyte density within treated and untreated tumors. Importantly, Delta-24-RGDOX significantly reduced the immunosuppression of endogenous OVA-specific CTLs while increasing that of CD8+ leukocytes and, to a lesser extent, adoptive pmel-1 T cells. Consequently, Delta-24-RGDOX drastically increased the density of the OVA-specific CTLs in both tumors, and the combination synergistically enhanced the effect. Consistently, the splenocytes from the combination group showed a significantly stronger response against other TAAs (OVA and TRP2) than gp100, resulted in higher activity against tumor cells. Therefore, our data demonstrate that, as an adjuvant therapy followed TAA-targeting T cells in localized treatment, Delta-24-RGDOX activates TME and promotes antigen spread, leading to efficacious systemic antitumor immunity to overcome tumor relapse. Significance: Adjuvant therapy with oncolytic viruses promotes antigen spread to potentiate localized intratumoral adoptive T-cell therapy with limited TAA targets, leading to sustainable systemic antitumor immunity to overcome tumor relapse.


Subject(s)
Adenoviridae Infections , Adenoviridae , Mice , Animals , Adenoviridae/genetics , Cell Line, Tumor , Mice, Inbred C57BL , Neoplasm Recurrence, Local , T-Lymphocytes, Cytotoxic , Antigens, Neoplasm , Tumor Microenvironment
6.
Sci Transl Med ; 14(661): eabq0095, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36070367

ABSTRACT

Triggering receptor expressed on myeloid cells 2 (TREM2) plays crucial roles in Alzheimer's disease (AD) by regulating microglia migration toward, and phagocytosis of oligomeric amyloid-ß (oAß) and amyloid plaques. Studies in rodent models of AD have shown that mice with increased TREM2 expression have reduced amyloid pathology. Here, we identified a TREM2 agonist monoclonal Ab (Ab18) by panning a phage-displayed single-chain variable fragment Ab library. By engineering the bivalent immunoglobulin G1 (IgG1) to tetra-variable domain immunoglobulin (TVD-Ig), we further increased the TREM2 activation by 100-fold. Stronger TREM2 activation led to enhanced microglia phagocytosis of the oAß-lipid complex, migration toward oAß, and improved microglia survival in vitro. Mechanistic studies showed increased TREM2 clustering on microglia by the tetravalent Ab18 TVD-Ig without altering microglial TREM2 amount. An engineered bispecific Ab targeting TREM2 and transferrin receptor (TfR; Ab18 TVD-Ig/αTfR) improved Ab brain entry by more than 10-fold with a broad brain parenchyma distribution. Weekly treatment of 5XFAD mice (a model of AD) with Ab18 TVD-Ig/αTfR showed a considerable reduction of amyloid burden with increased microglia migration to and phagocytosis of amyloid plaques, improved synaptic and neuronal marker intensity, improved cognitive functions, reduced endogenous tau hyperphosphorylation, and decreased phosphorylated neurofilament H immunostaining. This study demonstrated the feasibility of engineering multivalent TREM2 agonistic Ab coupled with TfR-mediated brain delivery to enhance microglia functions and reduce amyloid pathology in vitro and in vivo. This Ab engineering approach enables the development of effective TREM2-targeting therapies for AD.


Subject(s)
Alzheimer Disease , Amyloidosis , Alzheimer Disease/pathology , Amyloid , Amyloid beta-Peptides/metabolism , Animals , Antibodies , Disease Models, Animal , Membrane Glycoproteins , Mice , Plaque, Amyloid/pathology , Receptors, Immunologic
7.
Nat Commun ; 13(1): 5552, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36138032

ABSTRACT

One major limitation of neutralizing antibody-based COVID-19 therapy is the requirement of costly cocktails to reduce emergence of antibody resistance. Here we engineer two bispecific antibodies (bsAbs) using distinct designs and compared them with parental antibodies and their cocktail. Single molecules of both bsAbs block the two epitopes targeted by parental antibodies on the receptor-binding domain (RBD). However, bsAb with the IgG-(scFv)2 design (14-H-06) but not the CrossMAb design (14-crs-06) shows increased antigen-binding and virus-neutralizing activities against multiple SARS-CoV-2 variants as well as increased breadth of neutralizing activity compared to the cocktail. X-ray crystallography and cryo-EM reveal distinct binding models for individual cocktail antibodies, and computational simulations suggest higher inter-spike crosslinking potentials by 14-H-06 than 14-crs-06. In mouse models of infections by SARS-CoV-2 and multiple variants, 14-H-06 exhibits higher or equivalent therapeutic efficacy than the cocktail. Rationally engineered bsAbs represent a cost-effective alternative to antibody cocktails and a promising strategy to improve potency and breadth.


Subject(s)
Antibodies, Bispecific , COVID-19 Drug Treatment , Animals , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Immunoglobulin G , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
8.
Commun Biol ; 5(1): 960, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104515

ABSTRACT

Natural killer (NK) cells mediate antibody dependent cytotoxic killing of cancer cells via cross-linking FcγR on NK cells with IgG-Fc. Studies have shown that the single-hinge cleaved IgGs (scIgGs) have dysfunctional Fc and failed engagement with FcγRs on immune cells. However, little is known about how scIgGs impact on antitumor immunity in the tumor microenvironment. In this study, we revealed a significant association of tumor scIgGs with tumor progression and poor outcomes of breast cancer patients (n = 547). Using multiple mouse tumor models, we demonstrated that tumor scIgGs reduced NK cell cytotoxic activities and resulted in aggressive tumor progression. We further showed that an anti-hinge specific monoclonal antibody (AHA) rescued the dysfunctional Fc in scIgGs by providing a functional Fc and restored NK cell cytotoxic activity. These findings point to a novel immunotherapeutic strategy to enhance Fc engagement with FcγRs for activation of anticancer immunity.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Immunoglobulin G , Killer Cells, Natural , Mice , Neoplastic Processes , Tumor Microenvironment
9.
MAbs ; 14(1): 2107971, 2022.
Article in English | MEDLINE | ID: mdl-35921534

ABSTRACT

Triggering receptor expressed on myeloid cells 2 (TREM2) plays a crucial role in regulating microglial functions and removal of amyloid plaques in Alzheimer's disease (AD). However, therapeutics based on this knowledge have not been developed due to the low antibody brain penetration and weak TREM2 activation. In this study, we engineered a TREM2 bispecific antibody to potently activate TREM2 and enter the brain. To boost TREM2 activation, we increased the valency of bivalent anti-TREM2 Ab2 IgG to tetra-variable domain immunoglobulin (TVD-Ig), thus improving the EC50 of amyloid-ß oligomer (oAß)-lipid microglial phagocytosis by more than 100-fold. Ab2 TVD-Ig treatment also augmented both microglia migration toward oAß and microglia survival by 100-fold over the bivalent IgG antibody. By targeting the transferrin receptor (TfR), the brain-penetrating Ab2 TVD-Ig/αTfR bispecific antibody realized broad brain parenchyma distribution with a 10-fold increase in brain antibody concentration. Ab2 TVD-Ig/αTfR treatment of 5-month-old 5XFAD mice significantly boosted microglia-plaque interactions and enhanced amyloid plaque phagocytosis by microglia. Thus, potent TREM2 activation by a multivalent agonist antibody coupled with TfR-mediated brain entry can boost microglia clearance of amyloid plaques, which suggests the antibody has potential as an AD treatment.List of abbreviations AD: Alzheimer's disease; Ab: antibody; APOE: apolipoprotein E; Aß: amyloid beta; BBB: blood-brain barrier; BLI: bio-layer interferometry; CNS: central nervous system; CSF: colony-stimulating factor; CytoD: cytochalasin d; DAM: microglia type associated with neurodegenerative diseases; DAP12: DNAX-activation protein 12; TVD-Ig: tetra-variable domain immunoglobulin; ECD: extracellular domain; ELISA: enzyme-linked immunoassay; ESC: embryonic stem cell; hMGLs: human embryonic stem cell-derived microglia-like lines; IBA1: ionized calcium-binding adaptor molecule 1; ITAM: immunoreceptor tyrosine-based activation motif; KiH: knob-into-hole; NFAT: nuclear factor of activated t-cells; PC: phosphatidylcholine; PK: pharmacokinetics; PS: phosphatidylserine; pSYK: phosphorylated spleen tyrosine kinase; scFv: single-chain variable fragment; SEC: size-exclusion chromatography; sTREM2: soluble triggering receptor expressed on myeloid cells 2; SYK: spleen tyrosine kinase; TfR: transferrin receptor; TREM2: triggering receptor expressed on myeloid cells 2.


Subject(s)
Alzheimer Disease , Plaque, Amyloid , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Animals , Disease Models, Animal , Humans , Infant , Membrane Glycoproteins , Mice , Mice, Transgenic , Microglia/metabolism , Plaque, Amyloid/metabolism , Receptors, Immunologic , Receptors, Transferrin/metabolism , Syk Kinase/metabolism
10.
J Immunother Cancer ; 10(7)2022 07.
Article in English | MEDLINE | ID: mdl-35902132

ABSTRACT

BACKGROUND: Oncolytic viruses are considered part of immunotherapy and have shown promise in preclinical experiments and clinical trials. Results from these studies have suggested that tumor microenvironment remodeling is required to achieve an effective response in solid tumors. Here, we assess the extent to which targeting specific mechanisms underlying the immunosuppressive tumor microenvironment optimizes viroimmunotherapy. METHODS: We used RNA-seq analyses to analyze the transcriptome, and validated the results using Q-PCR, flow cytometry, and immunofluorescence. Viral activity was analyzed by replication assays and viral titration. Kyn and Trp metabolite levels were quantified using liquid chromatography-mass spectrometry. Aryl hydrocarbon receptor (AhR) activation was analyzed by examination of promoter activity. Therapeutic efficacy was assessed by tumor histopathology and survival in syngeneic murine models of gliomas, including Indoleamine 2,3-dioxygenase (IDO)-/- mice. Flow cytometry was used for immunophenotyping and quantification of cell populations. Immune activation was examined in co-cultures of immune and cancer cells. T-cell depletion was used to identify the role played by specific cell populations. Rechallenge experiments were performed to identify the development of anti-tumor memory. RESULTS: Bulk RNA-seq analyses showed the activation of the immunosuppressive IDO-kynurenine-AhR circuitry in response to Delta-24-RGDOX infection of tumors. To overcome the effect of this pivotal pathway, we combined Delta-24-RGDOX with clinically relevant IDO inhibitors. The combination therapy increased the frequency of CD8+ T cells and decreased the rate of myeloid-derived suppressor cell and immunosupressive Treg tumor populations in animal models of solid tumors. Functional studies demonstrated that IDO-blockade-dependent activation of immune cells against tumor antigens could be reversed by the oncometabolite kynurenine. The concurrent targeting of the effectors and suppressors of the tumor immune landscape significantly prolonged the survival in animal models of orthotopic gliomas. CONCLUSIONS: Our data identified for the first time the in vivo role of IDO-dependent immunosuppressive pathways in the resistance of solid tumors to oncolytic adenoviruses. Specifically, the IDO-Kyn-AhR activity was responsible for the resurface of local immunosuppression and resistance to therapy, which was ablated through IDO inhibition. Our data indicate that combined molecular and immune therapy may improve outcomes in human gliomas and other cancers treated with virotherapy.


Subject(s)
Glioma , Oncolytic Viruses , Animals , CD8-Positive T-Lymphocytes/metabolism , Glioma/therapy , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase , Kynurenine/metabolism , Mice , Oncolytic Viruses/genetics , Oncolytic Viruses/metabolism , Synapses/metabolism , Tumor Microenvironment
11.
Mol Neurodegener ; 17(1): 44, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35717259

ABSTRACT

BACKGROUND: Microglia plays crucial roles in Alzheimer's disease (AD) development. Triggering receptor expressed on myeloid cells 2 (TREM2) in association with DAP12 mediates signaling affecting microglia function. Here we study the negative regulation of TREM2 functions by leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2), an inhibitory receptor bearing ITIM motifs. METHODS: To specifically interrogate LILRB2-ligand (oAß and PS) interactions and microglia functions, we generated potent antagonistic LILRB2 antibodies with sub-nanomolar level activities. The biological effects of LILRB2 antagonist antibody (Ab29) were studied in human induced pluripotent stem cell (iPSC)-derived microglia (hMGLs) for migration, oAß phagocytosis, and upregulation of inflammatory cytokines. Effects of the LILRB2 antagonist antibody on microglial responses to amyloid plaques were further studied in vivo using stereotaxic grafted microglia in 5XFAD mice. RESULTS: We confirmed the expression of both LILRB2 and TREM2 in human brain microglia using immunofluorescence. Upon co-ligation of the LILRB2 and TREM2 by shared ligands oAß or PS, TREM2 signaling was significantly inhibited. We identified a monoclonal antibody (Ab29) that blocks LILRB2/ligand interactions and prevents TREM2 signaling inhibition mediated by LILRB2. Further, Ab29 enhanced microglia phagocytosis, TREM2 signaling, migration, and cytokine responses to the oAß-lipoprotein complex in hMGL and microglia cell line HMC3. In vivo studies showed significantly enhanced clustering of microglia around plaques with a prominent increase in microglial amyloid plaque phagocytosis when 5XFAD mice were treated with Ab29. CONCLUSIONS: This study revealed for the first time the molecular mechanisms of LILRB2-mediated inhibition of TREM2 signaling in microglia and demonstrated a novel approach of enhancing TREM2-mediated microglia functions by blocking LILRB2-ligand interactions. Translationally, a LILRB2 antagonist antibody completely rescued the inhibition of TREM2 signaling by LILRB2, suggesting a novel therapeutic strategy for improving microglial functions.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Ligands , Membrane Glycoproteins/metabolism , Mice , Microglia/metabolism , Plaque, Amyloid/metabolism , Receptors, Immunologic/metabolism
12.
MAbs ; 14(1): 2057269, 2022.
Article in English | MEDLINE | ID: mdl-35388745

ABSTRACT

Glioblastoma (GBM) is a common and aggressive brain cancer that accounts for 60% of adult brain tumors. Anti-angiogenesis therapy is an attractive option due to the high vasculature density of GBM. However, the best-known anti-angiogenic therapeutics, bevacizumab, and aflibercept, have failed to show significant benefits in GBM patients. One of the reasons is the limited brain penetration of antibody-based therapies due to existence of the blood-brain barrier (BBB), which is further strengthened by the blood vessel normalization effects induced by anti-angiogenic therapies. To investigate if increased drug concentration in the brain by transferrin receptor (TfR)-mediated delivery across the BBB can enhance efficacy of anti-angiogenic antibody therapies, we first identified an antibody that binds to the apical domain of the mouse TfR and does not compete with the natural ligand transferrin (Tf) binding to TfR. Then, we engineered two bispecific antibodies fusing a vascular endothelial growth factor (VEGF)-Trap with the TfR-targeting antibody. Characterization of the two bispecific formats using multiple in vitro assays, which include endocytosis, cell surface and whole-cell TfR levels, human umbilical vein endothelial cell growth inhibition, and binding affinity, demonstrated that the VEGF-Trap fused with a monovalent αTfR (VEGF-Trap/moAb4) has desirable endocytosis without the induction of TfR degradation. Peripherally administered VEGF-Trap/moAb4 improved the brain concentration of VEGF-Trap by more than 10-fold in mice. The distribution of VEGF-Trap/moAb4 was validated to be in the brain parenchyma, indicating the molecule was not trapped inside the vasculature. Moreover, improved VEGF-Trap brain distribution significantly inhibited the angiogenesis of U-87 MG GBM tumors in a mouse model.


Subject(s)
Antibodies, Bispecific , Glioblastoma , Angiogenesis Inhibitors/pharmacology , Animals , Antibodies, Bispecific/metabolism , Glioblastoma/metabolism , Humans , Mice , Receptors, Transferrin , Receptors, Vascular Endothelial Growth Factor , Recombinant Fusion Proteins , Transferrin/metabolism , Vascular Endothelial Growth Factor A
13.
bioRxiv ; 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35132410

ABSTRACT

One major limitation of neutralizing antibody-based COVID-19 therapy is the requirement of costly cocktails to reduce antibody resistance. We engineered two bispecific antibodies (bsAbs) using distinct designs and compared them with parental antibodies and their cocktail. Single molecules of both bsAbs block the two epitopes targeted by parental antibodies on the receptor-binding domain (RBD). However, bsAb with the IgG-(scFv) 2 design (14-H-06) but not the CrossMAb design (14-crs-06) increases antigen-binding and virus-neutralizing activities and spectrum against multiple SARS-CoV-2 variants including the Omicron, than the cocktail. X-ray crystallography and computational simulations reveal distinct neutralizing mechanisms for individual cocktail antibodies and suggest higher inter-spike crosslinking potentials by 14-H-06 than 14-crs-06. In mouse models of infections by SARS-CoV-2 and the Beta, Gamma, and Delta variants, 14-H-06 exhibits higher or equivalent therapeutic efficacy than the cocktail. Rationally engineered bsAbs represent a cost-effective alternative to antibody cocktails and a promising strategy to improve potency and breadth.

14.
J Phys Condens Matter ; 34(17)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35030543

ABSTRACT

Understanding the atomic diffusion features in metallic material is significant to explain the diffusion-controlled physical processes. In this paper, using electromigration experiments and molecular dynamic (MD) simulations, we investigate the effects of grain size and temperature on the self-diffusion of polycrystalline aluminium (Al). The mass transport due to electromigration are accelerated by increasing temperature and decreasing grain size. Magnitudes of effective diffusivity (Deff) and grain boundary diffusivity (DGBs) are experimentally determined, in which theDeffchanges as a function of grain size and temperature, butDGBsis independent of the grain size, only affected by the temperature. Moreover, MD simulations of atomic diffusion in polycrystalline Al demonstrate those observations from experiments. Based on MD results, the Arrhenius equation ofDGBsand empirical formula of the thickness of grain boundaries at various temperatures are obtained. In total,DeffandDGBsobtained in the present study agree with literature results, and a comprehensive result of diffusivities related to the grain size is presented.

15.
Opt Express ; 29(19): 30319-30326, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34614757

ABSTRACT

In this study, an iterative method using polarized Raman spectroscopy to quantitatively determine all the in-plane components of the stress tensor in semiconductor structures is presented. Raman experiments were conducted on silicon at different stress states. The results obtained by the proposed method were in good agreement with the given stress state. In addition, the effect of random errors of Raman shifts on the stress component calculation is discussed. In contrast to the conventional analytical solution, our iterative method can significantly reduce the random errors.

16.
Materials (Basel) ; 14(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34500925

ABSTRACT

Solder joint fatigue is one of the critical failure modes in ball-grid array packaging. Because the reliability test is time-consuming and geometrical/material nonlinearities are required for the physics-driven model, the AI-assisted simulation framework is developed to establish the risk estimation capability against the design and process parameters. Due to the time-dependent and nonlinear characteristics of the solder joint fatigue failure, this research follows the AI-assisted simulation framework and builds the non-sequential artificial neural network (ANN) and sequential recurrent neural network (RNN) architectures. Both are investigated to understand their capability of abstracting the time-dependent solder joint fatigue knowledge from the dataset. Moreover, this research applies the genetic algorithm (GA) optimization to decrease the influence of the initial guessings, including the weightings and bias of the neural network architectures. In this research, two GA optimizers are developed, including the "back-to-original" and "progressing" ones. Moreover, we apply the principal component analysis (PCA) to the GA optimization results to obtain the PCA gene. The prediction error of all neural network models is within 0.15% under GA optimized PCA gene. There is no clear statistical evidence that RNN is better than ANN in the wafer level chip-scaled packaging (WLCSP) solder joint reliability risk estimation when the GA optimizer is applied to minimize the impact of the initial AI model. Hence, a stable optimization with a broad design domain can be realized by an ANN model with a faster training speed than RNN, even though solder fatigue is a time-dependent mechanical behavior.

17.
Nat Commun ; 12(1): 2031, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795676

ABSTRACT

Patient-derived xenografts are crucial for drug development but their use is challenged by issues such as murine viral infection. We evaluate the scope of viral infection and its impact on patient-derived xenografts by taking an unbiased data-driven approach to analyze unmapped RNA-Seq reads from 184 experiments. We find and experimentally validate the extensive presence of murine viral sequence reads covering entire viral genomes in patient-derived xenografts. The existence of viral sequences inside tumor cells is further confirmed by single cell sequencing data. Extensive chimeric reads containing both viral and human sequences are also observed. Furthermore, we find significantly changed expression levels of many cancer-, immune-, and drug metabolism-related genes in samples with high virus load. Our analyses indicate a need to carefully evaluate the impact of viral infection on patient-derived xenografts for drug development. They also point to a need for attention to quality control of patient-derived xenograft experiments.


Subject(s)
Genome, Viral/genetics , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Sequence Analysis, DNA/methods , Xenograft Model Antitumor Assays/methods , Animals , Cell Line, Tumor , Gene Products, env/classification , Gene Products, env/genetics , Gene Products, gag/classification , Gene Products, gag/genetics , Heterografts/metabolism , Heterografts/virology , Humans , Mice , Neoplasms/classification , Neoplasms/virology , Phylogeny , Virus Diseases/genetics , Virus Diseases/virology
18.
Opt Express ; 28(9): 13921-13937, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403858

ABSTRACT

Light-emitting diode (LED) arrays have attracted increased attention in the area of high power intelligent automotive headlamps because of their superiority in disposing of the power limit of an individual LED package and controllably luminous intensity and illumination pattern. The optical and chromatic performances of an LED array do not equal to the sum of individual LED packages' performances, as the thermal interactions between individual LED packages can't be ignored in the actual application. This paper presents a thermal-electrical-spectral (TES) model to dynamically predict the optical and chromatic performances of the LED array. The thermal-electrical (TE) model considering the thermal coupling effect in the LED array is firstly proposed to predict the case temperature of each individual LED package, and the Spectral power distributions (SPDs) of individual LED package is then decomposed by the extended Asym2sig model to extract the spectral characteristic parameters. Finally, the experimental measurements of the designed LED arrays operated under usage conditions are used to verify the TES model. Some validation case studies show that the prediction accuracy of the proposed TES model, which is expressed as a quadratic polynomial function of current and case temperature, can be achieved higher than 95%. Therefore, it can be concluded that this TES model offers a convenient method with high accuracy to dynamically predict the optical and chromatic performances of LED arrays at real usages.

19.
Phys Chem Chem Phys ; 22(21): 12321, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32432242

ABSTRACT

Correction for 'Liquid-phase exfoliated SnS as a semiconductor coating filler to enhance corrosion protection performance' by Hongyu Tang et al., Phys. Chem. Chem. Phys., 2019, 21, 18179-18187, DOI: 10.1039/C9CP03381E.

20.
Nanotechnology ; 31(5): 055501, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31484166

ABSTRACT

Humidity sensors based on flexible sensitive nanomaterials are very attractive in noncontact healthcare monitoring. However, the existing humidity sensors have some shortcomings such as limited sensitivity, narrow relative humidity (RH) range, and a complex process. Herein, we show that a tin sulphide (SnS) nanoflakes-based sensor presents high humidity sensing behaviour both in rigid and flexible substrate. The sensing mechanism based on the Schottky nature of a SnS-metal contact endows the as-fabricated sensor with a high response of 2491000% towards a wide RH range from 3% RH to 99% RH. The response and recovery time of the sensor are 6 s and 4 s, respectively. Besides, the flexible SnS nanoflakes-based humidity sensor with a polyimide substrate can be well attached to the skin and exhibits stable humidity sensing performance in the natural flat state and under bending loading. Moreover, the first-principles analysis is performed to prove the high specificity of SnS to the moisture (H2O) in the air. Benefiting from its promising advantages, we explore some application of the SnS nanoflakes-based sensors in detection of breathing patterns and non-contact finger tips sensing behaviour. The sensor can monitor the respiration pattern of a human being accurately, and recognize the movement of the fingertip speedily. This novel humidity sensor shows great promising application in physiological and physical monitoring, portable diagnosis system, and noncontact interface localization.


Subject(s)
Biosensing Techniques/instrumentation , Humidity , Nanostructures/chemistry , Sulfides/chemistry , Tin Compounds/chemistry , Water/chemistry , Humans , Monitoring, Ambulatory/instrumentation , Nanostructures/ultrastructure , Reaction Time , Silicon Dioxide/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...