Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6430, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833280

ABSTRACT

Soft fluidic robots have attracted a lot of attention and have broad application prospects. However, poor fluidic power source and easy to damage have been hindering their development, while the lack of intelligent self-protection also brings inconvenience to their applications. Here, we design diversified self-protection soft fluidic robots that integrate soft electrohydrodynamic pumps, actuators, healing electrofluids, and E-skins. We develop high-performance soft electrohydrodynamic pumps, enabling high-speed actuation and large deformation of untethered soft fluidic robots. A healing electrofluid that can form a self-healed film with excellent stretchability and strong adhesion is synthesized, which can achieve rapid and large-areas-damage self-healing of soft materials. We propose multi-functional E-skins to endow robots intelligence, making robots realize a series of self-protection behaviors. Moreover, our robots allow their functionality to be enhanced by the combination of electrodes or actuators. This design strategy enables soft fluidic robots to achieve their high-speed actuation and intelligent self-protection, opening a door for soft robots with physical intelligence.

2.
Natl Sci Rev ; 10(9): nwad192, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37565196

ABSTRACT

Active mechanical metamaterials with customizable structures and deformations, active reversible deformation, dynamically controllable shape-locking performance and stretchability are highly suitable for applications in soft robotics and flexible electronics, yet it is challenging to integrate them due to their mutual conflicts. Here, we introduce a class of phase-transforming mechanical metamaterials (PMMs) that integrate the above properties. Periodically arranging basic actuating units according to the designed pattern configuration and positional relationship, PMMs can customize complex and diverse structures and deformations. Liquid-vapor phase transformation provides active reversible large deformation while a silicone matrix offers stretchability. The contained carbonyl iron powder endows PMMs with dynamically controllable shape-locking performance, thereby achieving magnetically assisted shape locking and energy storing in different working modes. We build a theoretical model and finite element simulation to guide the design process of PMMs, so as to develop a variety of PMMs with different functions suitable for different applications, such as a programmed PMM, reconfigurable antenna, soft lens, soft mechanical memory, biomimetic hand, biomimetic flytrap and self-contained soft gripper. PMMs are applicable to achieve various 2D deformations and 2D-to-3D deformations, and integrate multiple properties, including customizable structures and deformations, active reversible deformation, rapid reversible shape locking, adjustable energy storing and stretchability, which could open a new application avenue in soft robotics and flexible electronics.

3.
ACS Appl Mater Interfaces ; 15(8): 10325-10340, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36802468

ABSTRACT

The manipulation of underwater bubbles on substrates has received extensive research interest from both the scientific community and industry, including the chemical industry, machinery, biology, medicine, and other fields. Recent advances in "smart" substrates have enabled the bubbles to be transported on demand. Herein, the progress in the directional transport of underwater bubbles on various types of substrates is summarized, including planes, wires, and cones. The transport mechanism can be classified as buoyancy-driven, Laplace-pressure-difference-driven, and external-force-driven according to the driven force of the bubble. Moreover, the wide applications of directional bubble transport are reported, ranging from gas collection, microbubble reaction, bubble detection and classification, bubble switch, and bubble microrobots. Lastly, the advantages and challenges of various directional bubble transportation methods are discussed, and the current challenges and future prospects in this field are also discussed. This Review outlines the fundamental mechanisms of underwater bubble transportation on solid substrates and helps to understand the methods of optimizing bubble transportation performances.

SELECTION OF CITATIONS
SEARCH DETAIL
...