Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124387, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38704999

ABSTRACT

The development of tools that can provide a holistic picture of the evolution of the tumor microenvironment in response to intermittent fasting on the prevention of breast cancer is highly desirable. Here, we show, for the first time, the use of label-free Raman spectroscopy to reveal biomolecular alterations induced by intermittent fasting in the tumor microenvironment of breast cancer using a dimethyl-benzanthracene induced rat model. To quantify biomolecular alterations in the tumor microenvironment, chemometric analysis of Raman spectra obtained from untreated and treated tumors was performed using multivariate curve resolution-alternative least squares and support vector machines. Raman measurements revealed remarkable and robust differences in lipid, protein, and glycogen content prior to morphological manifestations in a dynamically changing tumor microenvironment, consistent with the proteomic changes observed by quantitative mass spectrometry. Taken together with its non-invasive nature, this research provides prospective evidence for the clinical translation of Raman spectroscopy to identify biomolecular variations in the microenvironment induced by intermittent fasting for the prevention of breast cancer, providing new perspectives on the specific molecular effects in the tumorigenesis of breast cancer.


Subject(s)
Breast Neoplasms , Fasting , Spectrum Analysis, Raman , Tumor Microenvironment , Spectrum Analysis, Raman/methods , Animals , Female , Tumor Microenvironment/drug effects , Breast Neoplasms/prevention & control , Breast Neoplasms/pathology , Rats , Disease Models, Animal , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Mammary Neoplasms, Experimental/prevention & control , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/pathology , Rats, Sprague-Dawley , Intermittent Fasting
2.
Chin Med J (Engl) ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38403898

ABSTRACT

BACKGROUND: Breast cancer (BC) risk-stratification tools for Asian women that are highly accurate and can provide improved interpretation ability are lacking. We aimed to develop risk-stratification models to predict long- and short-term BC risk among Chinese women and to simultaneously rank potential non-experimental risk factors. METHODS: The Breast Cancer Cohort Study in Chinese Women, a large ongoing prospective dynamic cohort study, includes 122,058 women aged 25-70 years from the eastern part of China. We developed multiple machine-learning risk prediction models using parametric models (penalized logistic regression, bootstrap, and ensemble learning), which were the short-term ensemble penalized logistic regression (EPLR) risk prediction model and the ensemble penalized long-term (EPLT) risk prediction model to estimate BC risk. The models were assessed based on calibration and discrimination, and following this assessment, they were externally validated in new study participants from 2017 to 2020. RESULTS: The AUC values of the short-term EPLR risk prediction model were 0.800 for the internal validation and 0.751 for the external validation set. For the long-term EPLT risk prediction model, the area under the receiver operating characteristic curve was 0.692 and 0.760 in internal and external validations, respectively. The net reclassification improvement index of the EPLT relative to the Gail and the Han Chinese Breast Cancer Prediction Model (HCBCP) models for external validation was 0.193 and 0.233, respectively, indicating that the EPLT model has higher classification accuracy. CONCLUSIONS: We developed the EPLR and EPLT models to screen populations with a high risk of developing BC. These can serve as useful tools to aid in risk-stratified screening and BC prevention.

3.
China CDC Wkly ; 5(9): 206-212, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-37007865

ABSTRACT

Introduction: Biases in cancer incidence characteristics have led to significant imbalances in databases constructed by prospective cohort studies. Since they use imbalanced databases, many traditional algorithms for training cancer risk prediction models perform poorly. Methods: To improve prediction performance, we introduced a Bagging ensemble framework to an absolute risk model based on ensemble penalized Cox regression (EPCR). We then tested whether the EPCR model outperformed other traditional regression models by varying the censoring rate of the simulated data. Results: Six different simulation studies were performed with 100 replicates. To assess model performance, we calculated mean false discovery rate, false omission rate, true positive rate, true negative rate, and the areas under the receiver operating characteristic curve (AUC) values. We found that the EPCR procedure could reduce the false discovery rate (FDR) for important variables at the same true positive rate (TPR), thereby achieving more accurate variable screening. In addition, we used the EPCR procedure to build a breast cancer risk prediction model based on the Breast Cancer Cohort Study in Chinese Women database. AUCs for 3- and 5-year predictions were 0.691 and 0.642, representing improvements of 0.189 and 0.117 over the classical Gail model, respectively. Discussion: We conclude that the EPCR procedure can overcome challenges posed by imbalanced data and improve the performance of cancer risk assessment tools.

4.
Front Oncol ; 12: 899900, 2022.
Article in English | MEDLINE | ID: mdl-35761863

ABSTRACT

Background: With the rapid development and wide application of high-throughput sequencing technology, biomedical research has entered the era of large-scale omics data. We aim to identify genes associated with breast cancer prognosis by integrating multi-omics data. Method: Gene-gene interactions were taken into account, and we applied two differential network methods JDINAC and LGCDG to identify differential genes. The patients were divided into case and control groups according to their survival time. The TCGA and METABRIC database were used as the training and validation set respectively. Result: In the TCGA dataset, C11orf1, OLA1, RPL31, SPDL1 and IL33 were identified to be associated with prognosis of breast cancer. In the METABRIC database, ZNF273, ZBTB37, TRIM52, TSGA10, ZNF727, TRAF2, TSPAN17, USP28 and ZNF519 were identified as hub genes. In addition, RPL31, TMEM163 and ZNF273 were screened out in both datasets. GO enrichment analysis shows that most of these hub genes were involved in zinc ion binding. Conclusion: In this study, a total of 15 hub genes associated with long-term survival of breast cancer were identified, which can promote understanding of the molecular mechanism of breast cancer and provide new insight into clinical research and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...