Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(16): 8096-8107, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38566568

ABSTRACT

Metal single-atom catalysts have attracted widespread attention in the field of lithium-oxygen batteries due to their unique active sites, high catalytic selectivity, and near total atomic utilization efficiency. Isolated metal atoms not only serve as the active sites themselves, but also function as modulators, reversely regulating the surface electronic structure of the support to enhance its inherent electrocatalytic activities. Despite the potential of isolated metal atom-driven active sites, understanding the structure-activity relationship remains a challenge. In this study, we present a ruthenium single-atom doping-driven cost-effective and durable tricobalt tetroxide electrocatalyst with excellent oxygen electrode electrocatalytic activity. The lithium-oxygen battery with this catalyst as the oxygen electrode demonstrates high performance, achieving a capacity of up to 25 000 mA h g-1 and maintaining good stability over 400 cycles at a current density of 100 mA g-1. This improvement is attributed to the exquisite control of the morphology and structure of the discharge product, lithium peroxide. The aresults of physical characterization and theoretical calculations reveal that isolated ruthenium atoms bond with the tetrahedral cobalt site, resulting in spin polarization enhancement and rearrangement of d orbital energy levels in cobalt. This rearrangement reduces the dz2 orbital occupancy and promotes their transfer to the octahedral cobalt site, thereby enhancing its adsorption capacity for the oxygen-containing intermediates, and ultimately increasing the electrocatalytic activity of the oxygen evolution reaction. This work presents an innovative strategy to regulate the catalytic activity of metal oxides by introducing another metal single atom.

2.
J Colloid Interface Sci ; 657: 384-392, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38056043

ABSTRACT

Sculpting crystal configurations can vastly affect the charge and orbital states of electrocatalysts, fundamentally determining the catalytic activity of lithium-oxygen (Li-O2) batteries. However, the crucial role of crystal configurations in determining the electronic states has usually been neglected and needs to be further examined. Herein, we introduce orthorhombic and trigonal system into 0.5La0.6Sr0.4MnO3-0.5LaMn0.6Co0.4O3 (LSMCO) by selectively incorporating Sr and Co cations into the LaMnO3 framework during the sol-gel process, which is used to explore the relationship among crystal structure, electronic states and catalytic performance. Based on both experimental and theoretical calculations, the dual-crystal configurations induce strong lattice distortion, which promotes MnO6 octahedra vibration and shortened MnO bonds. Furthermore, the suppressed Jahn-Teller distortion weakens the orbital arrangement and accelerates the charge delocalization, leading to the conversion of Mn3+ to Mn4+ and optimized electronic states. Ultimately, this resulted in optimized Mn 3d and O 2p orbital hybridization and activated lattice oxygen function, leading to a significant improvement in electrocatalytic activity. The LSMCO catalyzed Li-O2 battery achieves enhanced discharge capacity of 14498.7 mAh/g and cycling stability of 258 cycles. This work highlights the significance of inner structure and presents a feasible strategy for engineering crystal configurations to boost electrocatalysis of Li-O2 batteries.

3.
Anal Chim Acta ; 1283: 341949, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37977779

ABSTRACT

Electrochemical collision technique has emerged as a powerful approach to detect the intrinsic properties of single entities. The diffusion model, together with migration and convection processes are generally used to describe the transport and collision processes of single entities. However, things become more complicated concerning microbes because of their relatively large size, inherent motility and biological activities. In this work, the electrochemical collision behaviors of four different microorganisms: Escherichia coli (Gram-negative bacteria), Staphylococcus aureus, Bacillus subtilis (Gram-positive bacteria) and Saccharomyces cerevisiae (fungus) were systematically detected and compared using a blocking strategy. By using K4Fe(CN)6 as redox probe, the downwards step-like signals were recorded in the collision process of all the three bacteria, whereas the collision of S. cerevisiae was rarely detected. To further investigate the underlying reason for the abnormal collision behavior of S. cerevisiae, the effect of cell settlement was discussed. The results indicated that ellipsoidal S. cerevisiae with a cell size larger than 2 µm exhibited a cell sedimentation rate of 261.759 nm s-1, which is dozens of times higher than the other three bacteria. By further enhanced convection near the microelectrode or positioned the microelectrode at the bottom of electrochemical cell, the collision signals of S. cerevisiae were successfully detected, indicating cell sedimentation is a nonnegligible force in large cell transport. This study fully addressed the effect of cell settlement on the transport of microbial cells and provided two strategies to counteract this effect, which benefit for the deeper understanding and further application of electrochemical collision technique in single-cell detection.


Subject(s)
Bacillus subtilis , Saccharomyces cerevisiae , Escherichia coli , Electrochemical Techniques/methods
4.
Cell Rep ; 42(7): 112793, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37453064

ABSTRACT

Tissue-resident macrophages (TRMs) and dendritic cells (DCs) are highly heterogeneous and essential for immunity, tissue regeneration, and homeostasis maintenance. Here, we comprehensively profile the heterogeneity of TRMs and DCs across adult zebrafish organs via single-cell RNA sequencing. We identify two macrophage subsets: pro-inflammatory macrophages with potent phagocytosis signatures and pro-remodeling macrophages with tissue regeneration signatures in barrier tissues, liver, and heart. In parallel, one conventional dendritic cell (cDC) population with prominent antigen presentation capacity and plasmacytoid dendritic cells (pDCs) featured by anti-virus properties are also observed in these organs. Remarkably, in addition to a single macrophage/microglia population with potent phagocytosis capacity, a pDC population and two distinct cDC populations are identified in the brain. Finally, we generate specific reporter lines for in vivo tracking of macrophage and DC subsets. Our study depicts the landscape of TRMs and DCs and creates valuable tools for in-depth study of these cells in zebrafish.


Subject(s)
Macrophages , Zebrafish , Animals , Macrophages/metabolism , Gene Expression Profiling , Dendritic Cells/metabolism , Phagocytosis/genetics , Transcriptome/genetics
5.
J Colloid Interface Sci ; 652(Pt A): 727-736, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37453874

ABSTRACT

Rechargeable aqueous zinc-ion hybrid supercapacitors (ZHSs) are drawing extensive attention because of their cost-effectiveness and diminished safety hazards. Nevertheless, large-scale application of ZHSs has been hindered by the severe side reactions and rampant dendrites growth on the surface of Zn metal anodes. Herein, we propose a three-dimensional organic-inorganic composite frame material as an artificial bi-functional layer coated on the zinc foil, featuring nitrogenous functional groups with zincophilicity (abbreviated as NCFM@Zn). The nitrogen (N) site's strong adsorption capacity and synergistic effect of the sub-nanopore size promote rapid desolvation of zinc ions and reduce side reactions, while also prolonging galvanized nucleation's Sand's time and allowing for even nucleation. Moreover, the uniform distribution of N on the layer results in homogeneous zinc ions flux and supports consistent zinc plating while inhibiting dendrites generation. As a result of this unique artificial bi-functional layer, symmetric Zn cells can survive 2500 h at 2.5 mA cm-2. High-areal-capacity zinc||activated carbon hybrid supercapacitors also demonstrate 20,000 cycles at high Coulombic efficiency, thus highlighting the utter convenience and potential of this strategy for modifying rechargeable metal hybrid supercapacitor surfaces.

6.
J Colloid Interface Sci ; 645: 439-447, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37156152

ABSTRACT

Tailored electrocatalysts that can modulate their electronic structure are highly desirable to facilitate the reaction kinetics of oxygen evolution reaction (OER) and oxidation reduction reaction (ORR) in lithium-oxygen batteries (LOB). Although octahedron predominant inverse spinels (e.g., CoFe2O4) have been proposed as promising candidates for catalytic reactions, their performance has remained unsatisfactory. Herein, the chromium (Cr) doped CoFe2O4 nanoflowers (Cr-CoFe2O4) are elaborately constructed on nickel foam as a bifunctional electrocatalyst that drastically improves the performance of LOB. The results show that the partially oxidized Cr6+ stabilizes the cobalt (Co) sites at high-valence and regulates the electronic structure of Co sites, facilitating the oxygen redox kinetics of LOB due to their strong electron-withdrawing capability. Moreover, DFT calculations and ultraviolet photoelectron spectrometer (UPS) results consistently demonstrate that Cr doping optimizes the eg electron filling state of the active octahedral Co sites, significantly improves the covalency of Co-O bonds, and enhances the degree of Co 3d-O 2p hybrids. As a result, Cr-CoFe2O4 catalyzed LOB can achieve low overpotential (0.48 V), high discharge capacity (22030 mA h g-1) and long-term cycling durability (over 500 cycles at 300 mA g-1). This work promotes the oxygen redox reaction and accelerates the electron transfer between Co ions and oxygen-containing intermediates, highlighting the potential of Cr-CoFe2O4 nanoflowers as bifunctional electrocatalysts for LOB.

7.
Adv Mater ; 35(14): e2211648, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36634260

ABSTRACT

Skeletal muscles are natural motors executing sophisticated work through precise control of linear contraction. Although various liquid crystal polymers based artificial muscles have been designed, the mechanism based on mainly the order-disorder transition usually leads to discrete shape morphing, leaving arbitrary and precise deformation a huge challenge. Here, one novel photoresponsive hemiphasmidic side-chain liquid crystal polymer with a unique "breathing" columnar phase that enables continuous morphing is presented. Due to confinement inside the supramolecular columnar assembly, the cooperative movements of side-chains and backbones generate a significant negative thermal expansion and lead to temperature-controllable muscle-like elongation/contraction in the oriented polymer strip. The irreversible isomerization of the photoresponsive mesogens results in the synergistic phototunable bending and high-contrast fluorescence change. Based on the orthogonal responses to heat and light, controllable arm-like bending motions of this material, which is applicable in constructing advanced artificial muscles or intelligent soft robotics, are further demonstrated.

8.
Small Methods ; 7(1): e2201177, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36529700

ABSTRACT

With markedly expansive demand in energy storage devices, rechargeable batteries will concentrate on achieving the high energy density and adequate security, especially under harsh operating conditions. Considering the high capacity (3860 mA h g-1 ) and low electrochemical potential (-3.04 V vs the standard hydrogen electrode), lithium metal is identified as one of the most promising anode materials, which has sparked a research boom. However, the intrinsically high reactivity triggers a repeating fracture/reconstruction process of the solid electrolyte interphase, side reactions with electrolyte and lithium dendrites, detrimental to the electrochemical performance of lithium metal batteries (LMBs). Even worse, when exposed to air, lithium metal will suffer severe atmospheric corrosion, especially the reaction with moisture, leading to grievous safety hazards. To settle these troubles, constructing air-stable protective layers (ASPLs) is an effective solution. In this review, besides the necessity of ASPLs is highlighted, the modified design criteria, focusing on enhancing chemical/mechanical stability and controlling ion flux, are proposed. Correspondingly, current research progress is comprehensively summarized and discussed. Finally, the perspectives of developing applicable lithium metal anodes (LMAs) are put forward. This review guides the direction for the practical use of LMAs, further pushing the evolution of safe and stable LMBs.

9.
Talanta ; 255: 124204, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36580811

ABSTRACT

Electrochemical biosensor, as a real-time and rapid detection method, has rarely been explored in marine monitoring. In present work, microbial electrochemical biosensors based on two design strategies: disperse system and integrated microbial electrode, were systematically discussed and their feasibility in marine biotoxicity assessment were investigated. An isolation method was initially investigated to eliminate the potential interference and detect the biological response accurately. The influence of water salinity on the current response was eliminated by adopting the salt-tolerant bacteria Staphylococcus aureus as test microorganism and buffer solution with sufficient ionic strength. The biotoxicity of heavy metal ions and pesticides were sensitively determined. Furthermore, a novel integrated microbial biosensor was designed by immobilizing S. aureus with a redox-active gel that consists of chitosan and poly (diallyl dimethyl ammonium chloride) mixture and confined potassium ferricyanide via electrostatic interaction. The IC50 values for Cu2+, Zn2+, Cr2O72- and Ni2+ were 3.01 mg/L, 1.34 mg/L, 7.64 mg/L and 9.41 mg/L, respectively. This work not only verified the feasibility of electrochemical biosensor in marine pollution monitoring, but also compared the pros and cons of two biosensor design strategies, which provide a guidance for the future development and application of marine monitoring devices based on electrochemical method.


Subject(s)
Biosensing Techniques , Metals, Heavy , Staphylococcus aureus , Feasibility Studies , Biosensing Techniques/methods , Electrochemical Techniques/methods
10.
J Colloid Interface Sci ; 635: 138-147, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36584614

ABSTRACT

The electronic structure of cathode catalysts dominates the electrochemistry reaction kinetics in lithium-oxygen batteries. However, conventional catalysts perform inferior intrinsic activity due to the low d-band level of the active sites makes it difficult to bond with the reaction intermediates, which results in poor electrochemical performance of lithium-oxygen batteries. Herein, NiFe2O4/MoS2 heterostructures are elaborately constructed to reach an electronic state balance for the active sites, which realizes the upper shift of the d-band level and enhanced adsorption of intermediates. Density functional theory calculation suggests that the d-band center of Fe active sites on the heterostructure moves toward the Fermi level, demonstrating the heterointerface engineering endows Fe active sites with high d-band level by the transfer and balance of electron. As a proof of concept, lithium-oxygen battery catalyzed by NiFe2O4/MoS2 exhibits a large specific capacity of 21526 mA h g-1 and an extended cycle performance for 268 cycles. Moreover, NiFe2O4/MoS2 with strong adsorption to intermediates promotes the uniform growth of discharge products, which is favor of the reversible decomposition during cycling. This work presents the energy band regulation of the active sites in heterostructure catalysts has great feasibility for enhancing catalytic activities.

11.
Nanotechnology ; 33(43)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35760042

ABSTRACT

Light olefins (C2-C4) play a crucial role as basic ingredients in chemical industry, and oxidative dehydrogenation (ODH) of light alkanes to olefins has been one of the popular routes since the shale gas revolution. ODH of light alkanes has advantages on energy-and-cost saving as compared with traditional direct dehydrogenation, but it is restricted by its overoxidation which results in the relatively low olefin selectivity. Boron nitride (BN), an interesting nanomaterial with an analogous structure to graphene, springs out and manifests the superior performance as advanced catalysts in ODH, greatly improving the olefin selectivity under high alkane conversion. In this review, we introduce BN nanomaterials in four dimensions together with typical methods of syntheses. Traditional catalysts for ODH are also referred as comparison on several indicators-olefin yields and preparation techniques, including the metal-based catalysts and the non-metal-based catalysts. We also surveyed the BN catalysts for ODH reaction in recent five years, focusing on the different dimensions of BN together with the synthetic routes accounting for the active sites and the catalytic ability. Finally, an outlook of the potential promotion on the design of BN-based catalysts and the possible routes for the exploration of BN-related catalytic mechanisms are proposed.

12.
Am Behav Sci ; 65(14): 2014-2036, 2021 Dec.
Article in English | MEDLINE | ID: mdl-38603026

ABSTRACT

Although studies have investigated cyber-rumoring previous to the pandemic, little research has been undertaken to study rumors and rumor-corrections during the COVID-19 (coronavirus disease 2019) pandemic. Drawing on prior studies about how online stories become viral, this study will fill that gap by investigating the retransmission of COVID-19 rumors and corrective messages on Sina Weibo, the largest and most popular microblogging site in China. This study examines the impact of rumor types, content attributes (including frames, emotion, and rationality), and source characteristics (including follower size and source identity) to show how they affect the likelihood of a COVID-19 rumor and its correction being shared. By exploring the retransmission of rumors and their corrections in Chinese social media, this study will not only advance scholarly understanding but also reveal how corrective messages can be crafted to debunk cyber-rumors in particular cultural contexts.

13.
ACS Appl Mater Interfaces ; 12(41): 46710-46718, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32965096

ABSTRACT

Due to spontaneous organization of cellulose nanocrystals (CNCs) into the chiral nematic structure that can selectively reflect circularly polarized light within a visible-light region, fabricating stretching deformation-responsive CNC materials is of great interest but is still a big challenge, despite such a function widely observed from existing creatures, like a chameleon, because of the inherent brittleness. Here, a flexible network structure is introduced in CNCs, exerting a bridge effect for the rigid nanomaterials. The as-prepared films display high flexibility with a fracture strain of up to 39%. Notably, stretching-induced structural color changes visible to the naked eye are realized, for the first time, for CNC materials. In addition, the soft materials show humidity- and compression-responsive properties in terms of changing apparent structural colors. Colored marks left by ink-free writing can be shown or hidden by controlling the environmental humidities. This biobased photonic film, acting as a new "smart skin", is potentially used with multifunctions of chromogenic sensing, encryption, and anti-counterfeit.

14.
Chemistry ; 26(53): 12134-12139, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32488940

ABSTRACT

The synthesis of phosphine-based functional covalent organic frameworks (COFs) has attracted great attention recently. Herein, we present two examples of triphenylphosphine-based COFs (termed P-COFs) with well-defined crystalline structures, high specific surface areas, and good thermal stability. Furthermore, rhodium catalysts with these P-COFs as support material show high turnover frequency for the hydroformylation of olefins, as well as excellent recycling performance. This work not only extends the phosphine-based COF family, but also demonstrates their application in immobilizing homogeneous metal-based (e.g., Rh-phosphine) catalysts for application in heterogeneous catalysis.

15.
Soft Matter ; 16(12): 3088-3095, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32149316

ABSTRACT

We investigated the co-assembly of amphiphilic diblock copolymers in solutions containing drugs and functional nanoparticles using the dissipative particle dynamics (DPD) method. By controlling the size and the concentration of the functional nanoparticles, the length of the hydrophobic blocks, and the interaction parameters between the hydrophobic block/solvent and the functional nanoparticles, we obtained the desired aggregates to load drugs. The aggregates loaded with drugs can be disk-like micelles, sphere-like micelles and vesicles with functional nanoparticles on the surface. When the solvent environment changes, the drugs loaded in the functional vesicles can release into the solvent. The release content is critically dependent on the repulsive interaction between the drugs and the solvent. The dynamic curve of drug release is obtained. The result is in agreement with the experiments about drug release. Our studies showed that we can precisely control the formation of functional vesicles to load and release drugs. Loading drugs in the process of self-assembly and controlling the release have broad potential in the field of clinical medicine and adding functional nanoparticles can be of great help in drug delivery and medical diagnosis.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Surface-Active Agents/chemistry , Drug Liberation , Hydrophobic and Hydrophilic Interactions , Models, Molecular
16.
Nanoscale ; 12(2): 584-590, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31845694

ABSTRACT

With high theoretical specific density, low cost, and non-toxicity, Li-S batteries are regarded as a promising candidate for next-generation energy storage systems. However, the shuttling of soluble Li polysulfides (LiPSs) results in self-discharge and rapid capacity degradation. Herein, nitrogen-doped hierarchical porous carbon with embedded highly dispersed vanadium (v)-Nx sites (V-N-C) is developed as a high-performance Li-S battery cathode for the first time. The metal-organic polymer supramolecule structure formed by the electrostatic/hydrogen bond interaction of chitosan-VO3- strongly stabilizes V to generate a high density of V-Nx/C sites. During the discharge/charge process, the unique V-Nx/C active sites can serve as efficient catalysts to accelerate the redox kinetics of LiPSs, while the hierarchical porous carbon structure of V-N-C benefits the diffusion/transfer of Li+/e- and suppresses the shuttling of LiPSs. As a result, the S/V-N-C composite delivers a high specific capacity of 1111.2 mA h g-1 at 0.5C and maintains 573.6 mA h g-1 at 5C with a low capacity decay rate of 0.087% per cycle (over 500 cycles at 1C). The rate performance of the developed V-N-C cathode in Li-S batteries is superior to that of most of the reported M-N-C and carbon material/metal compound composite electrodes.

17.
Chem Sci ; 10(24): 6083-6090, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31360413

ABSTRACT

Fischer-Tropsch synthesis of lower olefins (FTO) is a classical yet modern topic of great significance in which the supported Fe-based nanoparticles are the most promising catalysts. The performance deterioration of catalysts is a big challenge due to the instability of the nanosized active phase of iron carbides. Herein, by in situ mass spectrometry, theoretical analysis, and atmospheric- and high-pressure experimental examinations, we revealed the Ostwald-ripening-like growth mechanism of the active phase of iron carbides in FTO, which involves the cyclic formation-decomposition of iron carbonyl intermediates to transport iron species from small particles to large ones. Accordingly, by suppressing the formation of iron carbonyl species with a high-N-content carbon support, the size and structure of the active phase were regulated and stabilized, and durable iron-based catalysts were conveniently obtained with the highest selectivity for lower olefins up to 54.1%. This study provides a practical strategy for exploring advanced FTO catalysts.

18.
Nanoscale ; 10(12): 5634-5641, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29528070

ABSTRACT

Li-S battery technology, with high theoretical capacity and energy density, has drawn much attention in recent years as a possible replacement for current Li-ion battery technologies. A major drawback of Li-S batteries is a severe capacity fading effect which, to a large extent, stems from the dissolution and diffusion of lithium polysulfides (LiPS) that are formed during both charge and discharge cycles. The self-discharge caused by the LiPS migration during the charge process (the so-called "shuttle effect") often leads to the capacity decay of Li-S batteries. Herein, hollow structured metal oxide (Co3O4, Mn2O3, and NiO) submicro-spheres are prepared by a novel method and employed as efficient LiPS immobilizers. These Li-S batteries, based on the developed metal oxide spheres, possess outstanding rate capability and cycling stability. The best performing S/C/Co3O4 electrode delivers excellent cycling stability with only a 0.066% capacity decay per cycle during 550 cycles. Moreover, its discharge capacity is as high as 428 mA h g-1 at a 3C rate which is far superior to that of bare S/C (115 mA h g-1) at 3C. The fast kinetics of the electrocatalytic conversion of LiPS on the developed Co3O4 electrode and its unique hollow structure are the key factors that lead to its outstanding performance as a Li-S battery cathode material.

19.
Chem Asian J ; 11(22): 3159-3164, 2016 Nov 22.
Article in English | MEDLINE | ID: mdl-27677154

ABSTRACT

A carbonylcobalt catalyst, immobilized by poly(4-vinylpyridine) (P4VP) through N→Co coordination bonds, has been prepared by solvothermal method. It has been revealed that the pyridine fragments in the polymer catalyst act not only as promoters to improve the catalytic performance of the carbonylcobalt catalyst for alkoxycarbonylation of ethylene oxide to methyl 3-hydroxypropanoate but also as stabilizers to enhance the reusability of the polymer catalyst. Furthermore, the polymer catalyst could be easily separated by filtration and reused with only a slight loss of catalytic efficiency.

20.
Biosci Biotechnol Biochem ; 80(2): 215-20, 2016.
Article in English | MEDLINE | ID: mdl-26428060

ABSTRACT

The catalytic properties of Cu-ZnO catalysts for glycerol hydrogenolysis to 1,2-propanediol (1,2-PDO) were tested in a fixed-bed reactor at 250 °C and 2.0 MPa H2. The relation between composition, surface properties, and catalytic performance of glycerol hydrogenation of Cu-ZnO catalysts was studied using nitrogen adsorption (BET methods), XRD, H2 temperature-programmed reduction, and N2O chemisorptions. It was found that there was a close link between the surface CuO amount of Cu-ZnO catalyst and the reactivity for glycerol hydrogenation. The Cu-ZnO catalyst (Cu/Zn = 1.86) which had the highest surface Cu amount showed the best catalytic activity for glycerol hydrogenolysis. Furthermore, Cu-ZnO catalyst presented good stability and remarkable catalytic activity for glycerol hydrogenolysis to 1,2-PDO using raw glycerol derived from the fat saponification as feedstock.


Subject(s)
Copper/chemistry , Glycerol/chemistry , Hydrogen/chemistry , Propylene Glycol/chemistry , Zinc Oxide/chemistry , Catalysis , Hydrogenation , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...