Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37835940

ABSTRACT

The bonding properties of BFRP composites have been demonstrated in previous studies, satisfying the strength and durability criteria. In this paper, a further in-depth study is carried out to bond Basalt Fibre Reinforced Polymer (BFRP) to Aluminum Alloy 5052 using two bonding agents, Aralite® 2012 and Aralite® 2015, respectively. The salt sprays under 80 °C, 3.5% NaCl environment; 80 °C, 5% NaCl environment; and pure water environment are also considered for comparison. Experimental results show that joints created with Araldite® 2012 adhesives show higher average breaking strength (10.66 MPa at 720 h) and better ductility in a 5% NaCl environment. While the Araldite® 2015 adhesive joint exhibits a combination of tear failure and interface failure, along with thin-layer cohesion failure. In the SEM images of the two adhesive joints' failure, fiber pullout due to tension and damage at the interface between fiber and resin is apparent. To validate the experimental outcomes, water absorption testing, DSC, TGA-DTG, and FTIR experiments were conducted on dog-bone-shaped adhesive specimens to elucidate the results.

2.
Polymers (Basel) ; 15(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37835997

ABSTRACT

Basalt Fibre Reinforced Polymer (BFRP)-bonded structures are lightweight, high strength, economical, and environmentally friendly, which is very advantageous in the civil sector. The aim of this paper is to provide a comprehensive account of the hygrothermal degradation and failure mechanisms of BFRP-bonded structures by comparing the residual properties of two epoxy adhesive BFRP single-lap joints after ageing for 240 h, 480 h, and 720 h in an extreme hygrothermal environment with pure water at 80 °C. The hydrophilicity and thermal stability of the two adhesives were firstly compared by water absorption and Thermogravimetric Analysis (TGA) tests, and the hygrothermal degradation of the molecular chains and the reduction in Tg were characterised by Fourier Transform Infra-Red (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC) curves. The failure strength and load-displacement curves of the two joints were then compared, and it was found that the strength and stiffness had different trends, while the paired t-test was used to demonstrate the correlation between the failure strength and the adhesive Tg, as well as the difference in the failure mechanisms of the two joints caused by the water absorption rate. The analysis of macrosections and Scanning Electron Microscope (SEM) images summarised the process and reasons for the transition of the failure mode from fibre tearing to hybrid failure, and finally, the changes in elemental concentration and O/C values were analysed by Energy Dispersive X-ray Analysis (EDX), which proved that the degree of hydrolysis could not be used as a judgement of the degradation degree of the joint alone, and provided data support for the application of the BFRP-bonded structure in the humid and hot environment.

3.
Polymers (Basel) ; 15(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37571126

ABSTRACT

Fiber-reinforced polymers (FRPs) have great potential in shipbuilding. As a new type of material, basalt-fiber-reinforced polymer (BFRP) has received increasing attention due to its good economic and environmental performance. In this paper, BFRP single-lap joints (SLJs) bonded by Araldite®2011 and Araldite®2014 were selected as sample objects, the joints, aged for 240 h, 480 h, and 720 h, were experimentally analyzed in 3.5% NaCl solution/5% NaCl solution at 80 °C. The sequential dual Fickian (SDF) model was used to fit the water absorption process of the dumbbell specimen material. By comparison, the water absorption of the material occurred mainly on the adhesive and the water absorption of Araldite®2011 was higher than that of Araldite®2014. The decrease in the Tg of the aged joint adhesive was characterized by DSC, and the TG test showed that the polymer material in the joint was degraded by the damp-heat effect. The quasi-static tensile test showed that the decrease in joint failure strength was positively correlated with the water content of the solution. The Araldite®2011 adhesive joint showed better mechanical properties and stability than the Araldite®2014 adhesive joint, while the secondary crosslinking of the bound water with the polymer chain resulted in a slight increase in the stiffness of the aged joint. From comprehensive observation of the macro-section and SEM-EDX images, it is concluded that the failure mode of the joint changes from fiber tearing to mixed failure of fiber tearing and adhesive layer cohesion, and the plasticizing effect of the epoxy resin in the adhesive and chemical corrosion of salt ions weakens the adhesive layer's bond strength.

4.
Polymers (Basel) ; 14(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35956556

ABSTRACT

Wind power, being a recyclable and renewable resource, makes for a sizable portion of the new energy generation sector. Nonetheless, the wind energy industry is experiencing early failure of important components of wind turbines, with the majority of these issues also involving wind power bearings. Bearing dependability is directly tied to the transmission efficiency and work performance of wind turbines as one of its major components. The majority of wind turbine failures are due to bearings, and the vast majority of bearing failures are due to lubrication. The topic of improving the accuracy and life of wind power bearing motion is becoming increasingly essential as the wind power industry develops rapidly. This study examines the various constructions and types of wind turbines, as well as their bearings. We also examined the most typical causes of friction and lubrication failure. Furthermore, contemporary research on wind turbine bearings has been compiled, which mostly comprises the study and development of lubrication technology and other areas. Finally, a conclusion and outlook on current challenges, as well as future research directions, are offered.

5.
Polymers (Basel) ; 14(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683925

ABSTRACT

Due to the low price and good comprehensive properties, FRP composite material has become a new type of civil application material in recent years. In this paper, Araldite® 2012 adhesive was used to bond basalt-fiber-reinforced polymer (BFRP), and the durability of its bonded joints was investigated. Experiments were carried out at 80 °C/DI water (deionized water), 80 °C/3.5% NaCl solution (3.5% SS), and 80 °C/5.0% NaCl solution (5.0% SS) at 0- (unaged), 10-, 20-, and 30-day aging. The specimen and BFRP in the environment of 80 °C/DI water, 80 °C/3.5% SS, and 80 °C/5.0% SS found salt solution under the condition of all sample water absorption decreases, and the activity of salt solution chemistry was weaker compared with deionized water. The load-displacement curve of the joint failure was obtained through quasi-static tensile experiments, and it was found that the adhesive would undergo a post-curing reaction that had a positive impact on the stiffness of the joint in a high-temperature environment. At the same time, it was found that the joint failure strength decreased less in the salt solution environment, and deionized water was more destructive than the salt solution. Referring to the change in water absorption, it was found that the change in the mechanical properties of the joint was mainly related to the permeation effect of the polymer. The change in the Tg of adhesive was measured by differential scanning calorimetry (DSC). It was found that Tg would decrease after aging, and the change in Tg was mainly related to the mobility of the molecular chain. Thermogravimetric analysis (TGA) was used to analyze the thermal behavior of the epoxy resin and some organic matter, and the main weight loss stage was 340-450 °C, which was the complete degradation of epoxy resin and some organic matter. Macro visual and microscopic scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to analyze the failure section, and it can be concluded that the failure mode of joint tear failure transitioned to cohesion in the late-mixed interface failure, at the visible interface between the fiber and the resin matrix.

6.
Polymers (Basel) ; 14(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35566890

ABSTRACT

Facing increasingly serious resource crises, energy conservation is becoming the development trend of various delivery vehicles, and lightweight is an important way to achieve energy conservation. In this paper, the basalt fiber-reinforced resin composite material (BFRP) was selected to study the effect of its bonding structure, and it was used to make BFRP-BFRP joints. Two adhesives, Araldite®2012 and Araldite®2015, were used to make single-lap joints and dumbbell-shaped specimens. Aging environments of 80 °C/95% RH and 80 °C/pure water were used for the 0-day (unageing), 10-day, 20-day, and 30-day aging tests, respectively. According to Fick's second law, the moisture absorption change model of two adhesives was established, and it was found that the water absorption process could be divided into two stages, which explains the precipitation of water molecules and the reaction of water molecules with functional groups. The maximum average failure load and load-displacement curves under different environments and different joints were obtained by using the electronic universal tensile machine, and the exposure time was more important than the effect of humidity. At the same time, the change law of failure strength and ductility were analyzed. The change of Tg (Glass transition temperature) was analyzed by differential scanning calorimetry (DSC) equipment, and the results showed that molecular chain rupture was the reason for the decrease of Tg. It could be seen from the joint failure mode distribution that Araldite®2012 adhesive was easily affected by the environment, and the joint of Araldite®2015 adhesive was affected by the combined effect of the adhesive and BFRP.

7.
Polymers (Basel) ; 13(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34451133

ABSTRACT

Fiber-reinforced polymer (FRP) materials are increasingly used in automotive industrial fields to achieve lightweight. In order to study the influence of high temperature and high humidity on the bonding structure between different materials, this paper selects basalt fiber-reinforced resin composite materials (BFRP) and aluminum alloy (Al), and uses Araldite® 2012 and Araldite® 2014, two adhesives, to make single lap joints (SLJs). The aging test was carried out for 0 (unaged), 10, 20, and 30 days under the environment of 80 °C/95% relative humidity (RH) and 80 °C/pure water. In this work, simple Fickian law was used to simulate the hygroscopic change law of dumbbell specimens of two adhesives and BFRP in a pure water environment. It was discovered that Araldite® 2012 is most affected by moisture, but the time to reach the maximum water absorption in Araldite® 2014 was shorter than in Araldite® 2012. The failure strength of the joint was obtained through a quasi-static tensile experiment, and it was found that the Araldite® 2014 adhesive joint first increased and then decreased in a high temperature environment. The strength increased by 11.63% after 20 days of aging under an 80 °C/95%RH environment, and increased by 16.66% after 10 days of aging under an 80 °C/pure water environment, which indicates that post-curing reaction occurred. The strength of Araldite® 2012 joints showed a downward trend. After 30 days of aging, it reduced by 40.38% under an 80 °C/95%RH environment and 41.11% under an 80 °C/pure water environment. By observing the load-displacement curve, it was found that, as time increased, the slope of the curve decreased, indicating that the stiffness of the bonded joint decreased with time. The failure modes of the joints were analyzed by macroscopic images and microscopic SEM methods, and the results showed that the surface failure transitions from a mixed failure to a complete tear failure over time. The failure of the basalt fiber/resin interface was because the interaction between the epoxy resin in the adhesive and the epoxy resin in BFRP was greater than the force between the basalt fiber layer and the epoxy resin layer in the BFRP sheet.

8.
Materials (Basel) ; 11(11)2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30404218

ABSTRACT

A biomass based hydrogel soybean dregs-Poly(acrylic acid) (SD-PAA) was synthesized under UV radiation while using agricultural waste soybean dregs. Maximum absorption of SD-PAA is 3587 g·g-1 in distilled water and 302.0 g·g-1 in 150 mM NaCl aqueous solution. Moreover, the influence of granularity, salt solution, and ions in the solutions on water absorption is systematically studied. Sensitivity sequence of the hydrogel to cations was K⁺ < Na⁺ < NH4⁺ < Al3+ < Fe3+ < Mg2+ < Ca2+, and that to anions was PO43- > SO42- > Cl-. Moreover, the experimental results showed that SD-PAA water retention capability remained 37% after centrifugating for 60 min and 0.2% being dried at 60 °C for 70 h. Meanwhile, the swelling data agree well with the pseudo-second-order kinetic model and Fickian diffusion mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...