Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Nephrol ; 25(1): 203, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907188

ABSTRACT

IgA nephropathy, presently recognized as the foremost primary glomerular disorder, emerges as a principal contributor to renal failure globally, with its pathogenesis yet to be fully elucidated. Extensive research has highlighted the critical role of gut microbiome in the onset and progression of IgA nephropathy, underscoring its importance in accurately delineating the disease's etiology. For example, gut microbiome dysbacteriosis can lead to the production of nephritogenic IgA1 antibodies, which form immune complexes that deposit in the kidneys, causing inflammation and damage. The gut microbiome, a source of numerous bioactive compounds, interacts with the host and plays a regulatory role in gut-immune axis modulation, earning it the moniker of the "second brain." Recent investigations have particularly emphasized a significant correlation between IgA nephropathy and gut microbiome dysbacteriosis. This article offers a detailed overview of the pathogenic mechanisms of IgA nephropathy, specifically focusing on elucidating how alterations in the gut microbiome are associated with anomalies in the intestinal mucosal system in IgA nephropathy. Additionally, it describes the possible influence of gut microbiome on recurrent IgA nephropathy following kidney transplantation. Furthermore, it compiles potential therapeutic interventions, offering both theoretical and practical foundations for the management of IgA nephropathy. Lastly, the challenges currently faced in the therapeutic approaches to IgA nephropathy are discussed.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Glomerulonephritis, IGA , Immunity, Mucosal , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/microbiology , Humans , Gastrointestinal Microbiome/immunology , Dysbiosis/immunology , Dysbiosis/complications , Immunity, Mucosal/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Kidney Transplantation
2.
Biochem Biophys Res Commun ; 694: 149383, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38150918

ABSTRACT

Metformin is currently a strong candidate antitumor agent for multiple cancers, and has the potential to inhibit cancer cell viability, growth, and proliferation. Metabolic reprogramming is a critical feature of cancer cells. However, the effects of metformin which targets glucose metabolism on HepG2 cancer cells remain unclear. In this study, to explore the effects of metformin on glucose metabolism in HepG2 cells, we conducted real-time metabolomic monitoring of live HepG2 cells treated with metformin using 13C in-cell NMR spectroscopy. Metabolic tracing with U-13C6-glucose revealed that metformin significantly increased the production of 13C-G3P and 13C-glycerol, which were reported to attenuate liver cancer development, but decreased the production of potential oncogenesis-supportive metabolites, including 13C-lactate, 13C-alanine, 13C-glycine, and 13C-glutamate. Moreover, the expression levels of enzymes associated with the measured metabolites were carried out. The results showed that the levels of ALT1, MCT4, GPD2 and MPC1 were greatly reduced, which were consistent with the changes of measured metabolites in 13C in-cell NMR spectroscopy. Overall, our approach directly provides fundamental insights into the effects of metformin on glucose metabolism in live HepG2 cells, and highlights the potential mechanism of metformin, including the increase in production of G3P and glycerol derived from glucose, as well as the inhibition of glucose incorporation into lactate, alanine, glutamate, and glycine.


Subject(s)
Metformin , Humans , Metformin/pharmacology , Hep G2 Cells , Glycerol , Magnetic Resonance Spectroscopy , Glucose/metabolism , Alanine/metabolism , Glutamic Acid , Glycine , Lactates
3.
Nanomaterials (Basel) ; 13(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37513097

ABSTRACT

UV transparent conductive electrodes based on transferable ITO nanowire networks were prepared to solve the problem of low UV light utilization in conventional photoelectrochemical UV detectors. The mutually cross-linked ITO nanowire network achieved good electrical conductivity and light transmission, and the novel electrode had a transmission rate of more than 80% throughout the near-UV and visible regions. Compared to Ag nanowire electrodes with similar functionality, the chemical stability of the ITO nanowire transparent conductive electrode ensured that the device worked stably in iodine-based electrolytes. More importantly, ITO electrodes composed of oxides could withstand temperatures above 800 °C, which is extremely critical for photoelectrochemical devices. After the deposition of a TiO2 active layer using the high-temperature method, the response range of the photoelectrochemical UV detector was extended from a peak-like response between 300-400 nm to a plateau-like response between 200-400 nm. The responsivity was significantly increased to 56.1 mA/W. The relationship between ITO nanowire properties and device performance, as well as the reasons for device performance enhancement, were intensively investigated.

4.
RSC Adv ; 11(17): 9865-9873, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-35423482

ABSTRACT

In this study, an AgBr/Ag3PO4 (ABAP) photocatalyst has been prepared via a facile one-pot anion-exchange method. SEM, XRD, XPS and UV-Vis DRS characterization techniques are carried out to study the structural and physicochemical characteristics of the AgBr/Ag3PO4 composites. The ABAP photocatalyst exhibited outstanding photocatalytic capability for the photodegradation of rhodamine B (RhB) under visible light irradiation. The optimal ABAP-48% composite displayed the highest photocatalytic activity; a complete degradation was attained in 25 min under visible light irradiation. The excellent stability and reusability of ABAP catalysts were examined by five subsequent runs. A probable degradation mechanism of ABAP composites was carefully surveyed. Furthermore, radical trapping experiments confirmed that the ˙O2 - radical was the main active species in the photodegradation reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...