Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 25(5): e14368, 2024 May.
Article in English | MEDLINE | ID: mdl-38657114

ABSTRACT

OBJECTIVE: Alzheimer's disease, an irreversible neurological condition, demands timely diagnosis for effective clinical intervention. This study employs radiomics analysis to assess image features in default mode network cerebral perfusion imaging among individuals with cognitive impairment. METHODS: A radiomics analysis of cerebral perfusion imaging was conducted on 117 patients with cognitive impairment. They were divided into training and validation sets in a 7:3 ratio. Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest were employed to select and model image features, followed by logistic regression analysis of LASSO and Random Forest results. Diagnostic performance was assessed by calculating the area under the curve (AUC). RESULTS: In the training set, LASSO achieved AUC of 0.978, Random Forest had an AUC of 0.933. In the validation set, LASSO had AUC of 0.859, Random Forest had AUC of 0.986. By conducting Logistic Regression analysis in combination with LASSO and Random Forest, we identified a total of five radiomics features, with four related to morphology and one to textural features, originating from the medial prefrontal cortex and middle temporal gyrus. In the training set, Logistic Regression achieved AUC of 0.911, while in the validation set, it attained AUC of 0.925. CONCLUSION: The medial prefrontal cortex and middle temporal gyrus are the two brain regions within the default mode network that hold the highest significance for Alzheimer's disease diagnosis. Radiomics analysis contributes to the clinical assessment of Alzheimer's disease by delving into image data to extract deeper layers of information.


Subject(s)
Alzheimer Disease , Perfusion Imaging , Humans , Alzheimer Disease/diagnostic imaging , Female , Male , Aged , Perfusion Imaging/methods , Image Processing, Computer-Assisted/methods , Cerebrovascular Circulation/physiology , Middle Aged , Cognitive Dysfunction/diagnostic imaging , Aged, 80 and over , Magnetic Resonance Imaging/methods , Prognosis , Radiomics
2.
Front Oncol ; 13: 1030105, 2023.
Article in English | MEDLINE | ID: mdl-36776316

ABSTRACT

Background: Aggressive thyroid carcinoma (ATC) usually loses radioiodine avidity to iodine-131 (131I) due to the downregulation of sodium/iodide symporter (NIS). The expression of thyroid stimulating hormone receptor (TSHR) is more persistent than NIS and the administration of recombinant human thyroid stimulating hormone (rhTSH) promotes de novo NIS synthesis. Hence, exploring methods integrating 131I with rhTSH might be a feasible therapeutic strategy for selective delivery of 131I into thyroid cancer to fortify the effect of radioiodine ablation. Methods: The 131I, poly (lactic-co-glycolic acid) (PLGA) and rhTSH were used to synthesize of the 131I-PLGA-rhTSH nanoparticles. The characteristics of the 131I-PLGA-rhTSH nanoparticles was determined using a light microscopy, scanning electron microscopy (SEM), autoradiography and immunofluorescence (IF) staining. The diameter of the 131I-PLGA-rhTSH nanoparticles was measured with a Mastersizer 3000, and the encapsulation efficiency (EF) of 131I in 131I-PLGA-rhTSH nanoparticles and the radioactivity of a single nanoparticle were determined. Then, the mouse tumor xenograft model was established, and the biodistribution and effect of 131I-PLGA-rhTSH nanoparticles on apoptosis of thyroid cance cells were investigated in vivo. Thereafter, the role of 131I-PLGA-rhTSH nanoparticles in cell viability using cell counting kit-8 and lactate dehydrogenase (LDH) release assays. Subsequently, the underlying mechanism of 131I-PLGA-rhTSH nanoparticles in reducing cell viability was assessed using immunostaining, boyden invasion assays and phalloidin staining. Results: Our results showed that the method of developing nanoparticles-encapsulated 131I using poly (lactic-co-glycolic acid) (PLGA) and modified with rhTSH (131I-PLGA-rhTSH), was a feasible avenue for the integration of 131I and rhTSH. Meanwhile, the encapsulation efficiency (EF) of 131I-PLGA-rhTSH nanoparticles was approximately 60%, and the radioactivity of a single nanoparticle was about 1.1×10-2 Bq. Meanwhile, the 131I-PLGA-rhTSH nanoparticles were selectively delivered into, gradually enriched and slowly downregulated in xenograft tumor after the administration of 131I-PLGA-rhTSH nanoparticles through tail vein in mouse tumor xenograft model. Thereafter, the tumor weight was significantly reduced after the administration of 131I-PLGA-rhTSH nanoparticles. Subsequently, the application of 131I-PLGA-rhTSH nanoparticles facilitated apoptosis and attenuated immobilization via inhibiting F-actin assembling of FTC-133 cells. Conclusion: The present study develops a suitable approach integrating 131I and rhTSH, and this strategy is a feasible regimen enhancing the effect of radioiodine ablation for the treatment of thyroid cancer.

3.
Biomater Sci ; 9(18): 6126-6141, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34378578

ABSTRACT

Sonodynamic therapy (SDT) is a fast-growing therapy activated by using ultrasound to initiate a catalytic reaction of sensitizing agents and kill tumor cells through producing reactive oxygen species (ROS). Both sinoporphyrin sodium (DVDMS) and IR780 are preeminent sonosensitizers and have been used in SDT alone. In this study, tumor targeting multifunctional composite nanoparticles (DVDMS@IR780@PFP@PLGA, DIPP-NPs) were synthesized by encapsulating DVDMS, IR780 and perfluoropentane (PFP) to synergistically enhance SDT and achieve imaging of tumors. The loaded IR780 is regarded as a "navigator" to accurately identify and target tumor cells/tissues. DVDMS and IR780 not only can realize the directed SDT, but also can perform photoacoustic (PA) imaging. PFP plays its role in enhancing the ultrasound (US) imaging. Generally, DIPP-NPs not only have an obvious synergistic anti-tumor effect, but also are able to carry out dual-mode imaging, which paves a promising way for tumor therapy.


Subject(s)
Nanoparticles , Ultrasonic Therapy , Cell Line, Tumor , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...