Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 945: 174035, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38885705

ABSTRACT

The association of soil organic matter (SOM) with iron (Fe) oxyhydroxides, particularly ferrihydrite, plays a pivotal role in the biogeochemical cycling of carbon (C) in both terrestrial and aquatic environment. The aging of ferrihydrite to more crystalline phases can impact the stability of associated organic C, a process potentially influenced by aluminum (Al) substitution due to its abundance. However, the molecular mechanisms governing the temporal and spatial distribution of SOM during the aging process of Al-substituted Fe oxyhydroxides remain unclear. This study aims to bridge this knowledge gap through a comprehensive approach, utilizing batch experiments, solid characterization techniques, and atomic force microscopy (AFM) based peak-force quantitative nanomechanical mapping (PF-QNM). Batch experiments revealed that humic acid (HA) was released into the aqueous phase during aging, with Al inhibiting this release. Various solid characterization methods collectively suggested that Al hindered the crystalline transformation of ferrihydrite and significantly preserved HA on the surface of newly formed hematite, rather than it being occluded within the interior of the new minerals. Results from 3-Dimensional fluorescence spectroscopy (3D-EEM) and Fourier-transform infrared spectroscopy (FTIR) indicated that the structure of HA remained constant, with the carboxyl-rich and hydroxyl-rich portions of HA fixed at the mineral interface during the aging period. Furthermore, we developed AFM-based PF-QNM to both quantify and visualize the interactions between Fe oxyhydroxides and HA, demonstrating variations in HA affinity among different Fe oxyhydroxides and highlighting the influence of the Al substitution rate.

2.
Inorg Chem ; 63(15): 6909-6921, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38564449

ABSTRACT

The coprecipitation of iron (Fe) and phosphorus (P) in natural environments limits their bioavailability. Plant root-secreted organic acids can dissolve Fe-P precipitates, but the molecular mechanism underlying mobilizing biogenic elements from highly insoluble inorganic minerals remains poorly understood. Here, we investigated vivianite (Fe3(PO4)2·8H2O) dissolution by organic acids (oxalic acid (OA), citric acid (CA), and 2'-dehydroxymugineic acid (DMA)) at three different pH values (4.0, 6.0, and 8.0). With increasing pH, the vivianite dissolution efficiency by OA and CA was decreased while that by DMA was increased, indicating various dissolution mechanisms of different organic acids. Under acidic conditions, weak ligand OA (HC2O4- > C2O42- at pH 4.0 and C2O42- at pH 6.0) dissolved vivianite through the H+ effect to form irregular pits, but under alkaline condition (pH 8.0), the completely deprotonated OA was insufficient to dissolve vivianite. At pH 4.0, CA (H2Cit- > HCit2- > H3Cit) dissolved vivianite to form irregular pits through a proton-promoted mechanism, while at pH 6.0 (HCit2- > Cit3-) and pH 8.0 (Cit3-), CA dissolved vivianite to form near-rhombohedral pits through a ligand-promoted mechanism. At three pH values ((H0)DMA3- > (H1)DMA2- at pH 4.0, (H0)DMA3- at pH 6.0, and (H0)DMA3- and one deprotonated imino at pH 8.0), strong ligand DMA dissolved vivianite to form near-rhombohedral pits via ligand-promoted mechanisms. Raman spectroscopy showed that the deprotonated carboxyl groups (COO-) and imino groups were bound to Fe on the vivianite (010) face. The surface free energy of vivianite coated with OA decreased from 29.32 mJ m-2 to 24.23 mJ m-2 and then to 13.47 mJ m-2 with increasing pH, and that coated with CA resulted in a similar pH-dependent vivianite surface free-energy decrease while that coated with DMA increased the vivianite surface free energy from 31.92 mJ m-2 to 39.26 mJ m-2 and then to 49.93 mJ m-2. Density functional theory (DFT)-based calculations confirmed these findings. Our findings provide insight into the mechanism by which organic acids dissolved vivianite through proton and ligand effects.

3.
J Exp Bot ; 75(8): 2470-2480, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38243384

ABSTRACT

Needle-like calcium oxalate crystals called raphides are unique structures in the plant kingdom. Multiple biomacromolecules work together in the regulatory and transportation pathways to form raphides; however, the mechanism by which this occurs remains unknown. Using banana (Musa spp.), this study combined in vivo methods including confocal microscopy, transmission electron microscopy, and Q Exactive mass spectrometry to identify the main biomolecules, such as vesicles, together with the compositions of lipids and proteins in the crystal chamber, which is the membrane compartment that surrounds each raphide during its formation. Simulations of the vesicle transportation process and the synthesis of elongated calcium oxalate crystals in vitro were then conducted, and the results suggested that the vesicles carrying amorphous calcium oxalate and proteins embedded in raphides are transported along actin filaments. These vesicles subsequently fuse with the crystal chamber, utilizing the proteins embedded in the raphides as a template for the final formation of the structure. Our findings contribute to the fundamental understanding of the regulation of the diverse biomacromolecules that are crucial for raphide formation. Moreover, the implications of these findings extend to other fields such as materials science, and particularly the synthesis of functionalized materials.


Subject(s)
Calcium Oxalate , Musa , Calcium Oxalate/analysis , Calcium Oxalate/chemistry , Calcium Oxalate/metabolism , Musa/metabolism , Microscopy, Electron, Transmission , Mass Spectrometry , Biological Transport
4.
ACS Biomater Sci Eng ; 9(2): 601-607, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36722128

ABSTRACT

Multistep mineralization processes are pivotal in the fabrication of functional materials and are often characterized by far from equilibrium conditions and high supersaturation. Interestingly, such 'nonclassical' mineralization pathways are widespread in biological systems, even though concentrating molecules well beyond their saturation level is incompatible with cellular homeostasis. Here, we show how polymer phase separation can facilitate bioinspired silica formation by passively concentrating the inorganic building blocks within the polymer dense phase. The high affinity of the dense phase to mobile silica precursors generates a diffusive flux against the concentration gradient, similar to dynamic equilibrium, and the resulting high supersaturation leads to precipitation of insoluble silica. Manipulating the chemistry of the dense phase allows to control the delicate interplay between polymer chemistry and silica precipitation. These results connect two phase transition phenomena, mineralization and coacervation, and offer a framework to achieve better control of mineral formation.


Subject(s)
Polymers , Silicon Dioxide , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...