Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 465: 133244, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38147756

ABSTRACT

Cadmium (Cd) is a heavy metal that is of great concern in agroecosystems due to its toxicity to plants, herbivores, carnivores, and human beings. The current study evaluated the allocation and bioaccumulation of Cd from soil to cotton plants, cotton plants to herbivore pests, and herbivorous pests to a natural enemy predator. When soil was spiked with 100 mg/kg Cd, results demonstrated that cotton roots accumulated more Cd than the stems and leaves. The bioaccumulation of Cd was less in 4th instar larvae, pupa, and adults of Serangium japonicum than in Bemisia tabaci adults. The bioaccumulation in S. japonicum elongated the immature development period and reduced adult longevity, oviposition days, fertility, and total pre-oviposition duration. The net reproduction of S. japonicum was also reduced, as was female mature weight and feeding potential; as a result, Cd exposure could reduce the future population size compared to uncontaminated populations. There was decreased activity of the antioxidant enzymes (SOD, CAT, and POD) and energy-conserving lipids (glycogen, triglyceride, and total cholesterol) in Cd-contaminated S. japonicum compared to controls. The detoxifying enzyme activity of GST and P450 increased while AChE activity did not change. The qRT-PCR research showed that SOD1, CAT, POD, glycogen, and triglyceride gene expression was higher than in controls, whereas detoxification gene expression did not change. Our results indicate that Cd exposure has a physiological trade-off between its adverse effects on life history traits and elevated detoxification and antioxidation of S. japonicum, which could result from gene expression alteration. Further studies are needed to assess whether Cd exposure causes irreversible DNA damage in S. japonicum.


Subject(s)
Coleoptera , Hemiptera , Humans , Animals , Female , Coleoptera/physiology , Cadmium , Antioxidants , Glycogen , Soil , Triglycerides
2.
Insects ; 13(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36555070

ABSTRACT

Endosymbionts play an essential role in the biology, physiology and immunity of insects. Many insects, including the whitefly Bemisia tabaci, are infected with the facultative endosymbiont Rickettsia. However, the mutualism between Rickettsia and its whitefly host remains unclear. This study investigated the biological and physiological benefits of Rickettsia infection to B. tabaci. Results revealed that infection of Rickettsia increased the fertility, the survival rate from nymph to adult and the number of female whiteflies. In addition, this facilitation caused a significant reduction in nymphal developmental duration but did not affect percentage rate of egg hatching. Rickettsia infected B. tabaci had significantly higher glycogen, soluble sugar and trehalose contents than Rickettsia negative B. tabaci individuals. Rickettsia also improved the immunity of its whitefly hosts. Rickettsia infested B. tabaci had lower mortality rates and higher semi-lethal concentrations (LC50) when exposed to the fungus Akanthomyces attenuatus and the insecticides imidacloprid and spirotetramat. The percentage of parasitism by Encarsia formosa was also reduced by Rickettsia infection. Overall, Rickettsia infection benefits B. tabaci by improving the nutritional composition of its host, and also protects B. tabaci by enhancing its resistance towards insecticides (imidacloprid and spirotetramat), entomopathogenic fungi (A. attenuatus) and its main parasitoid (E. formosa); all of which could significantly impact on current management strategies.

3.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077199

ABSTRACT

Ultraviolet-C (UV-C) radiation significantly impacts living organisms. UV-C radiation can also be used as a pest management tool. Therefore, this study was designed to investigate the effect of UV-C radiation on the physiology and gene expression level of Plutella xylostella, a destructive vegetable pest. Results showed that, after exposure to UV-C radiation for 3, 6, 12, and 24 h, the activity of SOD (superoxide dismutase) and CAT (catalase) of P. xylostella increased, while the activity of PPO (polyphenol oxidase), POD (peroxidase), AChE (acetylcholinesterase), CarE (carboxylesterase), and ACP (acid phosphatase) decreased with increased exposure time. Correlation coefficient analyses indicated that the activity of CAT correlated positively, while PPO and CarE correlated negatively, with exposure time. Gene regulation analysis via qRT-PCR confirmed a significant increase in regulation in CAT, CarE, and PPO-related genes. We also investigated the effect of UV-C exposure on the virulence of Cordyceps fumosorosea against P. xylostella. Here, results indicated that when the fungal treatment was applied to larvae before UV-C radiation, the virulence of C. fumosorosea was significantly reduced. However, this decline in virulence of C. fumosorosea due to UV-C exposure remained only for one generation, and no effect was observed on secondary infection. On the other hand, when larvae were exposed to UV-C radiation before fungal application, the mortality rate significantly increased as the exposure time to UV-C radiation increased. From the current study, it could be concluded that UV-C exposure suppressed the immunity to P. xylostella, which later enhanced the virulence of entomopathogenic fungi. Moreover, the study also suggested that UV irradiation is an effective pest management tool that could be incorporated into pest management strategies, which could help reduce pesticide application, be economically beneficial for the farmer, and be environmentally safe.


Subject(s)
Cordyceps , Moths , Acetylcholinesterase , Animals , Larva/microbiology , Moths/microbiology
4.
Exp Appl Acarol ; 85(2-4): 173-190, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34677719

ABSTRACT

The citrus red mite (Panonychus citri) is a challenge to manage in citrus orchards due to resistance against several pesticides. There is a necessity therefore to find new pesticides for effective control of P. citri. This study was designed to evaluate the lethal and sublethal effects of emamectin benzoate against P. citri. The results showed that the LC50 of emamectin benzoate to adults of P. citri was 0.35 (0.26-0.43) mg a.i. L-1 and the LC90 was 1.44 (1.16-1.96) mg a.i. L-1. The sublethal concentration exposures (LC10 and LC30) had a significant negative impact on the larval, protonymph, and deutonymph developmental periods. Male longevity was much lower in LC30 treatments than in the controls. Although female longevity was unaffected, the fecundity (eggs per female) was decreased in the sublethal concentration treatments. Results revealed that the adult pre-oviposition period (APOP) and total pre-oviposition period (TPOP) were increased. Other growth parameters r, λ, and R0 decreased, whereas mean generation time (T) increased due to pesticide exposure. The survival rate (Sxj), age-specific fecundity and net maternity, life expectancy (Exj), and reproduction (Vxj) was reduced by LC10 and LC30 exposure. An increase in malondialdehyde (MDA) contents with increasing emamectin benzoate concentration demonstrates that emamectin benzoate induces oxidative stress in P. citri. The activity of antioxidant enzymes (superoxide dismutase, SOD and catalase, CAT) was decreased due to LC30 and LC10 treatments compared to the control. Detoxification enzyme activity (cytochrome P450, glutathione-S-transferases, GST and acetylcholinesterase, AChE) was increased in treated mites compared to the control. This study demonstrates that emamectin benzoate has both a lethal effect on citrus red mite and sublethal effects on its biology and physiology. It is, therefore, potentially an effective pesticide for management of P. citri.


Subject(s)
Citrus , Tetranychidae , Trombiculidae , Acetylcholinesterase , Animals , Ivermectin/analogs & derivatives , Pregnancy
5.
Oxid Med Cell Longev ; 2021: 2060288, 2021.
Article in English | MEDLINE | ID: mdl-34336086

ABSTRACT

Ultraviolet (UV) radiation significantly affects insect life and, as a result, has been widely used to control different invertebrate pests. The current results demonstrate that when Bemisia tabaci first instar nymphs are exposed to UV-A light for 12, 24, 48, and 72 h, their developmental and biological parameters are negatively affected by UV-A exposure; the effect increased with an increase in exposure time. We hypothesized that UV-A light is compatible with other biological control agents. Results showed that when the entomopathogenic fungus Cordyceps fumosorosea was applied to third instar nymphs of B. tabaci previously exposed to UV-A light, the LC50 was 3.4% lower after 72 h of exposure to UV-A light compared to the control. However, when the fungus was exposed to UV-A light, its virulence decreased with an increase in UV-A exposure time. The parasitism rate of Encarsia formosa against 24 h UV-A-exposed third instar nymphs of B. tabaci increased while the adult emergence from parasitized nymphs was not affected after UV-A light exposure. Parasitism rate was significantly reduced however following E. formosa exposure to UV-A light; but again, adult emergence was not affected from parasitized nymphs. The percentage mortality of E. formosa increased with increasing exposure time to UV-A light. The enzyme activity of SOD, CAT, GST, and AChE and the energy reserve contents were negatively affected due to UV-A exposure. Collectively, this study has demonstrated that UV-A light significantly suppresses the immune system of B. tabaci and that UV-A light is compatible with other biological control agents if it is applied separately from the biological agent.


Subject(s)
Hemiptera/chemistry , Ultraviolet Rays , Ultraviolet Therapy/methods , Animals
6.
J Microbiol Methods ; 168: 105797, 2020 01.
Article in English | MEDLINE | ID: mdl-31805300

ABSTRACT

Bacterial endosymbionts such as Rickettsia and Wolbachia play prominent roles in the development and behaviour of their insect hosts, such as whiteflies, aphids, psyllids and mealybugs. Accumulating studies have emphasized the importance of establishing experimental insect populations that are either lacking or bearing certain species of endosymbionts, because they are the basis in which to reveal the biological role of individual symbionts. In this study, using Rickettsia as an example, we explored a "single-pair screening" method to establish Rickettsia infected and uninfected populations of whitefly Bemisia tabaci MEAM1 for further experimental use. The original host population had a relatively low infection rate of Rickettsia (< 35%). When B. tabaci adults newly emerged, unmated males and females were randomly selected, and released into a leaf cage that covered a healthy plant leaf in order to oviposit F1 generation eggs. Following 6 days of oviposition, the parents were recaptured and used for PCR detection. The F1 progeny, for which parents were either Rickettsia positive or negative, were used to produce the F2 generation, and similarly in turn for the F3, F4 and F5 generations respectively; if the infection status of Rickettsia was consistent in the F1 to F5 generations, then the populations can be used as Rickettsia positive or negative lines for further experiments. In addition, our phylogenetic analyses revealed that Rickettsia has high fidelity during the maternal transmission in different generations.


Subject(s)
Hemiptera/microbiology , Microbiological Techniques/methods , Phylogeny , Rickettsia/genetics , Symbiosis/genetics , Animals , Female , Hemiptera/physiology , Male , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Rickettsia/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...