Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Pestic Biochem Physiol ; 199: 105759, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458662

ABSTRACT

The natural antimicrobial peptide, epsilon-poly-l-lysine (ε-PL), is widely acknowledged as a food preservative. However, its potential in managing bacterial brown blotch disease in postharvest edible mushrooms and the associated mechanism remain unexplored. In this study, concentrations of ε-PL ≥ 150 mg L-1 demonstrated significant inhibition effects, restraining over 80% of growth and killed over 99% of Pseudomonas tolaasii (P. tolaasii). This inhibition effect occurred in a concentration-dependent manner. The in vivo findings revealed that treatment with 150 mg L-1 ε-PL effectively inhibited P. tolaasii-caused brown blotch disease in Agaricus bisporus (A. bisporus) mushrooms. Plausible mechanisms underlying ε-PL's action against P. tolaasii in A. bisporus involve: (i) damaging the cell morphology and membrane integrity, and increasing uptake of propidium iodide and leakage of cellular components of P. tolaasii; (ii) interaction with intracellular proteins and DNA of P. tolaasii; (iii) inhibition of P. tolaasii-induced activation of polyphenol oxidase, elevation of antioxidative enzyme activities, stimulation of phenylpropanoid biosynthetic enzyme activities and metabolite production, and augmentation of pathogenesis-related protein contents in A. bisporus mushrooms. These findings suggest promising prospects for the application of ε-PL in controlling bacterial brown blotch disease in A. bisporus.


Subject(s)
Agaricus , Polylysine , Pseudomonas , Polylysine/pharmacology , Disease Resistance
2.
Fungal Genet Biol ; 170: 103864, 2024 02.
Article in English | MEDLINE | ID: mdl-38199492

ABSTRACT

Methyl jasmonate (MeJA)-regulated postharvest quality retention of Agaricus bisporus fruiting bodies is associated with arginine catabolism. However, the mechanism of MeJA-regulated arginine catabolism in edible mushrooms is still unclear. This study aimed to investigate the regulatory modes of MeJA on the expression of arginine catabolism-related genes and proteins in intact and different tissues of A. bisporus mushrooms during storage. Results showed that exogenous MeJA treatment activated endogenous JA biosynthesis in A. bisporus mushrooms, and differentially and tissue-specifically regulated the expression of arginine catabolism-related genes (AbARG, AbODC, AbSPE-SDH, AbSPDS, AbSAMDC, and AbASL) and proteins (AbARG, AbSPE-SDH, AbASL, and AbASS). MeJA caused no significant change in AbASS expression but resulted in a dramatic increase in AbASS protein level. Neither the expression of the AbSAMS gene nor the AbSAMS protein was conspicuously altered upon MeJA treatment. Additionally, MeJA reduced the contents of arginine and ornithine and induced the accumulation of free putrescine and spermidine, which was closely correlated with MeJA-regulated arginine catabolism-related genes and proteins. Hence, the results suggested that the differential and tissue-specific regulation of arginine catabolism-related genes and proteins by MeJA contributed to their selective involvement in the postharvest continuing development and quality retention of button mushrooms.


Subject(s)
Agaricus , Agaricus/genetics , Acetates/pharmacology , Cyclopentanes/pharmacology , Oxylipins/pharmacology
3.
Eur J Med Chem ; 260: 115780, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37666045

ABSTRACT

E-selectin, which is highly expressed in vascular endothelial cells near tumor and get involved in the all tumor growth steps: occurrence, proliferation and metastasis, is considered as a promise targeted protein for antitumor drug discovery. Herein, we would like to report the design, preparation and the anticancer evaluation of the peptide-PEG-podophyllotoxin conjugate(PEG-Pep-PODO), in which the short peptide (CIELLQAR) was used as the E-selectin ligand for the targeting purpose and the PEG portion the molecule got the conjugate self-assembled to form a water soluble nanoparticle. In vitro release study showed that the conjugated and entrapped PODO could be released simultaneously in the presence of GSH (highly expressed in tumor environmental conditions) and the GSH would catalyze the break of the disufur bond which linked of the PODO and the peptide-PEG portion of the conjugate. Cell adhesion test of the PEG-Pep-PODO indicated that E-selectin ligand peptide CIELLQAR could get specifically and efficiently binding to the E-selectin expressing human umbilical vein endothelial cells (HUVEC). In vitro cytotoxicity assay further revealed that PEG-Pep-PODO significantly improved the selectivity of PEG-Pep-PODO for killing the tumor cells and normal cells compared with PODO solution formulation. More importantly, the in vivo experiment demonstrated that the conjugate would accumulate of the PODO payload in tumor through targeting endothelial cells in the tumor microenvironment, which resulted in the much improved in vivo inhibition of tumor growth, intratumoral microvessel density, and decreased systemic toxicity of this nanoparticle over the free PODO. Furthermore, this water soluble conjugate greatly improved the pharmacokinetic properties of the mother molecule.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Neoplasms , Humans , Podophyllotoxin/pharmacology , E-Selectin , Ligands , Peptides/pharmacology , Human Umbilical Vein Endothelial Cells , Polyethylene Glycols , Tumor Microenvironment
4.
Proc Natl Acad Sci U S A ; 120(34): e2302603120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37579161

ABSTRACT

Certain transmembrane and membrane-tethered signaling proteins export from cilia as BBSome cargoes via the outward BBSome transition zone (TZ) diffusion pathway, indispensable for maintaining their ciliary dynamics to enable cells to sense and transduce extracellular stimuli inside the cell. Murine Rab-like 2 (Rabl2) GTPase resembles Chlamydomonas Arf-like 3 (ARL3) GTPase in promoting outward TZ passage of the signaling protein cargo-laden BBSome. During this process, ARL3 binds to and recruits the retrograde IFT train-dissociated BBSome as its effector to diffuse through the TZ for ciliary retrieval, while how RABL2 and ARL3 cross talk in this event remains uncertain. Here, we report that Chlamydomonas RABL2 in a GTP-bound form (RABL2GTP) cycles through cilia via IFT as an IFT-B1 cargo, dissociates from retrograde IFT trains at a ciliary region right above the TZ, and converts to RABL2GDP for activating ARL3GDP as an ARL3 guanine nucleotide exchange factor. This confers ARL3GTP to detach from the ciliary membrane and become available for binding and recruiting the phospholipase D (PLD)-laden BBSome, autonomous of retrograde IFT association, to diffuse through the TZ for ciliary retrieval. Afterward, RABL2GDP exits cilia by being bound to the ARL3GTP/BBSome entity as a BBSome cargo. Our data identify ciliary signaling proteins exported from cilia via the RABL2-ARL3 cascade-mediated outward BBSome TZ diffusion pathway. According to this model, hedgehog signaling defect-induced Bardet-Biedl syndrome caused by RABL2 mutations in humans could be well explained in a mutation-specific manner, providing us with a mechanistic understanding behind the outward BBSome TZ passage required for proper ciliary signaling.


Subject(s)
Cilia , Hedgehog Proteins , Humans , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Cilia/metabolism , GTP Phosphohydrolases/metabolism , Guanosine Triphosphate/metabolism , Hedgehog Proteins/metabolism , Membrane Proteins/metabolism , Protein Transport/genetics , rab GTP-Binding Proteins/metabolism , Chlamydomonas
5.
Eur J Med Chem ; 257: 115510, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37269672

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is emerging as the largest burden of chronic liver disease worldwide. Nonalcoholic steatohepatitis (NASH) is a progressive form of NAFLD that can progress to cirrhosis and hepatocellular carcinoma. Unfortunately, current treatment options for NASH are very limited. Among the multiple pathways of NASH, peroxisome proliferators-activated receptors (PPARS) are recognized as an important and effective target. GFT 505 is a dual excitement agent for the treatment of PPAR-α/δ for the treatment of NASH. However, its activity and toxicity need to be further improved. Therefore, here we would like to report the design, synthesis and biological evaluation of 11 GFT 505 derivatives. The initial cytotoxicity through proliferation activity of HepG2 cells and in vitro anti-NASH activity evaluation demonstrated that under the same concentration, the compound 3d possess significantly lower cytotoxicity and better anti-NASH activity than that of GFT 505. Moreover, Molecular docking also shows that 3d and PPAR-α/δ can form a stable hydrogen bond and have the lowest binding energy. Therefore this novel molecule 3d was selected to go further in vivo investigation. Methionine-choline deficiency (MCD) induced C57BL/6J NASH model mice was used for the in vivo biological experiments and the compound 3d demostrated lower liver toxicity than that of GFT 505 in the body at the same dose, and it did more effectively improve hyperlipidemia, liver fat degeneration and liver inflammation as well as significantly enhance the content of the GSH which is inportant for the liver protection. This study suggested that the compound 3d is a very promising lead compound for the treatment of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , PPAR delta , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Molecular Docking Simulation , Mice, Inbred C57BL , Liver/metabolism , PPAR alpha
6.
Proc Natl Acad Sci U S A ; 120(13): e2218819120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36943875

ABSTRACT

Certain ciliary transmembrane and membrane-tethered signaling proteins migrate from the ciliary tip to base via retrograde intraflagellar transport (IFT), essential for maintaining their ciliary dynamics to enable cells to sense and transduce extracellular stimuli inside the cell. During this process, the BBSome functions as an adaptor between retrograde IFT trains and these signaling protein cargoes. The Arf-like 13 (ARL13) small GTPase resembles ARL6/BBS3 in facilitating these signaling cargoes to couple with the BBSome at the ciliary tip prior to loading onto retrograde IFT trains for transporting towards the ciliary base, while the molecular basis for how this intricate coupling event happens remains elusive. Here, we report that Chlamydomonas ARL13 only in a GTP-bound form (ARL13GTP) anchors to the membrane for diffusing into cilia. Upon entering cilia, ARL13 undergoes GTPase cycle for shuttling between the ciliary membrane (ARL13GTP) and matrix (ARL13GDP). To achieve this goal, the ciliary membrane-anchored BBS3GTP binds the ciliary matrix-residing ARL13GDP to activate the latter as an ARL13 guanine nucleotide exchange factor. At the ciliary tip, ARL13GTP recruits the ciliary matrix-residing and post-remodeled BBSome as an ARL13 effector to anchor to the ciliary membrane. This makes the BBSome spatiotemporally become available for the ciliary membrane-tethered phospholipase D (PLD) to couple with. Afterward, ARL13GTP hydrolyzes GTP for releasing the PLD-laden BBSome to load onto retrograde IFT trains. According to this model, hedgehog signaling defects associated with ARL13b and BBS3 mutations in humans could be satisfactorily explained, providing us a mechanistic understanding behind BBSome-cargo coupling required for proper ciliary signaling.


Subject(s)
Bardet-Biedl Syndrome , Cilia , Humans , Cilia/metabolism , Protein Transport/genetics , Bardet-Biedl Syndrome/genetics , Hedgehog Proteins/metabolism , Membrane Proteins/metabolism , Guanosine Triphosphate/metabolism , Flagella/metabolism
7.
J Cell Physiol ; 238(3): 549-565, 2023 03.
Article in English | MEDLINE | ID: mdl-36852649

ABSTRACT

Certain ciliary transmembrane and membrane-associated signaling proteins export from cilia as intraflagellar transport (IFT) cargoes in a BBSome-dependent manner. Upon reaching the ciliary tip via anterograde IFT, the BBSome disassembles before being reassembled to form an intact entity for cargo phospholipase D (PLD) coupling. During this BBSome remodeling process, Chlamydomonas Rab-like 4 GTPase IFT27, by binding its partner IFT25 to form the heterodimeric IFT25/27, is indispensable for BBSome reassembly. Here, we show that IFT27 binds IFT25 in an IFT27 nucleotide-independent manner. IFT25/27 and the IFT subcomplexes IFT-A and -B are irrelevant for maintaining the stability of one another. GTP-loading onto IFT27 enhances the IFT25/27 affinity for binding to the IFT-B subcomplex core IFT-B1 entity in cytoplasm, while GDP-bound IFT27 does not prevent IFT25/27 from entering and cycling through cilia by integrating into IFT-B1. Upon at the ciliary tip, IFT25/27 cycles on and off IFT-B1 and this process is irrelevant with the nucleotide state of IFT27. During BBSome remodeling at the ciliary tip, IFT25/27 promotes BBSome reassembly independent of IFT27 nucleotide state, making postremodeled BBSomes available for PLD to interact with. Thus, IFT25/27 facilitates BBSome-dependent PLD export from cilia via controlling availability of intact BBSomes at the ciliary tip, while IFT27 nucleotide state does not participate in this regulatory event.


Subject(s)
Chlamydomonas , Cilia , Nucleotides , Phospholipase D , rab GTP-Binding Proteins , Cilia/chemistry , Cilia/metabolism , Flagella/chemistry , Flagella/metabolism , Phospholipase D/metabolism , Protein Transport , Signal Transduction , Chlamydomonas/cytology , Chlamydomonas/enzymology , Chlamydomonas/metabolism , rab GTP-Binding Proteins/metabolism , Guanosine Triphosphate/metabolism , Guanosine Diphosphate/metabolism
8.
J Cell Biol ; 221(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-36129685

ABSTRACT

Ciliary receptors and their certain downstream signaling components undergo intraflagellar transport (IFT) as BBSome cargoes to maintain their ciliary dynamics for sensing and transducing extracellular stimuli inside the cell. Cargo-laden BBSomes pass the transition zone (TZ) for ciliary retrieval, but how this passage is controlled remains elusive. Here, we show that phospholipase D (PLD)-laden BBSomes shed from retrograde IFT trains at the proximal ciliary region right above the TZ to act as Arf-like 3 (ARL3) GTPase-specific effectors in Chlamydomonas cilia. Under physiological condition, ARL3GDP binds to the membrane for diffusing into cilia. Following nucleotide exchange, ARL3GTP detaches from the ciliary membrane, binds to retrograde IFT train-shed and PLD-laden BBSomes at the proximal ciliary region right above the TZ, and recruits them to pass the TZ for ciliary retrieval likely via diffusion. ARL3 mediates the ciliary dynamics of certain signaling molecules through facilitating BBSome ciliary retrieval, providing a mechanistic understanding behind why ARL3-related Joubert syndrome shares overlapping phenotypes with Bardet-Biedl syndrome.


Subject(s)
ADP-Ribosylation Factors , Chlamydomonas , Cilia , Protein Transport , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Chlamydomonas/metabolism , Cilia/metabolism , GTP Phosphohydrolases/metabolism , Nucleotides/metabolism , Phospholipase D/metabolism
9.
J Cell Biol ; 221(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-36040375

ABSTRACT

The GTPase Arl13b participates in ciliary protein transport, but its contribution to intraflagellar transport (IFT), the main motor-based protein shuttle of cilia, remains largely unknown. Chlamydomonas arl13 mutant cilia were characterized by both abnormal reduction and accumulation of select membrane-associated proteins. With respect to the latter, a similar set of proteins including phospholipase D (PLD) also accumulated in BBSome-deficient cilia. IFT and BBSome traffic were apparently normal in arl13. However, transport of PLD, which in control cells moves by BBSome-dependent IFT, was impaired in arl13, causing PLD to accumulate in cilia. ARL13 only rarely and transiently traveled by IFT, indicating that it is not a co-migrating adapter securing PLD to IFT trains. In conclusion, the loss of Chlamydomonas ARL13 impedes BBSome-dependent protein transport, resulting in overlapping biochemical defects in arl13 and bbs mutant cilia.


Subject(s)
Chlamydomonas , GTP Phosphohydrolases/metabolism , Phospholipase D , Chlamydomonas/genetics , Chlamydomonas/metabolism , Cilia/metabolism , Dyneins/metabolism , Flagella/metabolism , Kinesins , Membrane Proteins/metabolism , Phospholipase D/metabolism , Protein Transport
10.
Crit Rev Anal Chem ; 52(6): 1408-1421, 2022.
Article in English | MEDLINE | ID: mdl-33611988

ABSTRACT

Food safety is an important livelihood issue, which has always been focused attention by countries and governments all over the world. As food supply chains are becoming global, food quality control is essential for consumer protection as well as for the food industry. In recent years, a great part of food analysis is carried out using new techniques for rapid detection. As the first biochip technology that has been approved by the Food and Drug Administration (FDA), there is an increasing interest in suspension array technology (SAT) for food and environmental analysis with advantages of rapidity, high accuracy, sensitivity, and throughput. Therefore, it is important for researchers to understand the development and application of this technology in food industry. Herein, we summarized the principle and composition of SAT and its application in food safety monitoring. The utility of SAT in detection of foodborne microorganisms, residues of agricultural and veterinary drugs, genetically modified food and allergens in recent years is elaborated, and the further development direction of SAT is envisaged.


Subject(s)
Environmental Pollutants , Foodborne Diseases , Food Analysis , Food Safety/methods , Foodborne Diseases/prevention & control , Humans , Technology , United States
11.
Crit Rev Food Sci Nutr ; 62(17): 4706-4725, 2022.
Article in English | MEDLINE | ID: mdl-33523717

ABSTRACT

Food safety become a hot issue currently with globalization of food trade and food supply chains. Chemical pollution, microbial contamination and adulteration in food have attracted more attention worldwide. Contamination with antibiotics, estrogens and heavy metals in water environment and soil environment have also turn into an enormous threat to food safety. Traditional small-scale, long-term detection technologies have been unable to meet the current needs. In the monitoring process, rapid, convenient, accurate analysis and detection technologies have become the future development trend. We critically synthesizing the current knowledge of various rapid detection technology, and briefly touched upon the problem which still exist in research process. The review showed that the application of novel materials promotes the development of rapid detection technology, high-throughput and portability would be popular study directions in the future. Of course, the ultimate aim of the research is how to industrialization these technologies and apply to the market.


Subject(s)
Food Safety , Metals, Heavy , Food Supply , Soil , Technology
12.
Microbiol Spectr ; 9(2): e0153121, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34668747

ABSTRACT

The microbial carbon pump (MCP) provides a mechanistic illustration of transformation of recalcitrant dissolved organic matter (DOM) in the ocean. Here, we explored and demonstrated the key roles of algae-associated microorganisms (mainly heterotrophic bacteria) in the production and transformation of carboxyl-rich alicyclic molecule (CRAM)-like DOM through a laboratory experiment involving cultures of Skeletonema dohrnii. Without the participation of the associated bacteria, CRAM-like DOM molecules were not detected via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in algal cultures treated with antibiotics. Similarly, CRAM-like DOM were not detected in cultures of bacteria alone. Our experimental results showed that algae-associated bacteria are important in the process of converting algal-derived organic matter into CRAM-like DOM during S. dohrnii culture. Bacteroidetes (mainly Flavobacteriia) dominated the bacterial community in the stationary and degradation phases, where the predicted metabolic pathways for bacterial assemblages were mainly involved in biosynthesis, metabolism, and degradation. Facilitated by these heterotrophic bacteria, the amount and the chemodiversity of CRAM-like DOM derived from algae varied during the growth and decomposition of algal cells, and CRAM-like DOM were enriched at the later growth stage. The properties and characteristics of these CRAM-like DOM, including molecular weight, double bond equivalent, hydrogen-carbon ratio, carbon-nitrogen ratio, carbon-sulfur ratio, and modified aromaticity index increased with the growth and decay of algal cells, indicating the transformation from active to recalcitrant DOM. In contrast, the organic matter in axenic cultures of S. dohrnii mainly existed in the form of particulate organic matters (POM), and small amounts of CRAM-like DOM were detected. This study provides the first laboratory evidence to reveal and confirm the direct involvement of algae-associated microbiomes in the production and transformation of algae-derived refractory DOM, highlighting the significance of these epiphytic bacteria in marine carbon sequestration and global carbon cycling. IMPORTANCE Dissolved organic matter (DOM) serves as a major carbon and nutrient pool in oceans, and recalcitrant DOM are the primary sources for carbon sequestration in depths. Here, we demonstrate the critical roles of algae-associated microorganisms (mainly heterotrophic bacteria) in the transformation of recalcitrant dissolved organic matter through laboratory cultures of a model diatom, Skeletonema dohrnii. Our experimental results showed that in addition to affecting the growth and the physiology of S. dohrnii, algae-associated bacteria are important in processing and converting algal DOM into CRAM-like DOM. Facilitated by the associated bacteria, the amount and the chemodiversity of DOM derived from algae varied during the growth and decomposition of algal cells, and enriched recalcitrant DOM formed in the later growth stage. The properties and diversity of DOM increased with the growth and decay of algal cells, indicating the transformation from active DOM to inert organic matter. Our results confirmed that the direct involvement of algae-associated microbes in the production of CRAM-like DOM. Detailed community structure analysis of the algae-associated bacterial community and its predicted functions confirmed the involvement of certain bacterial groups (e.g., Flavobacteriia) in biosynthesis, metabolism, and degradation.


Subject(s)
Bacteria/metabolism , Carbon/metabolism , Chlorophyta/metabolism , Dissolved Organic Matter/metabolism , Phytoplankton/microbiology , Bacteria/chemistry , Bacteria/classification , Bacteria/growth & development , Biotransformation , Chlorophyta/chemistry , Chlorophyta/growth & development , Chlorophyta/microbiology , Diatoms/chemistry , Diatoms/growth & development , Diatoms/metabolism , Diatoms/microbiology , Dissolved Organic Matter/chemistry , Lakes/chemistry , Lakes/microbiology , Mass Spectrometry , Phytoplankton/chemistry , Phytoplankton/growth & development , Phytoplankton/metabolism
13.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34446551

ABSTRACT

Many G protein-coupled receptors and other signaling proteins localize to the ciliary membrane for regulating diverse cellular processes. The BBSome composed of multiple Bardet-Biedl syndrome (BBS) proteins is an intraflagellar transport (IFT) cargo adaptor essential for sorting signaling proteins in and/or out of cilia via IFT. Leucine zipper transcription factor-like 1 (LZTFL1) protein mediates ciliary signaling by controlling BBSome ciliary content, reflecting how LZTFL1 mutations could cause BBS. However, the mechanistic mechanism underlying this process remains elusive thus far. Here, we show that LZTFL1 maintains BBSome ciliary dynamics by finely controlling BBSome recruitment to the basal body and its reassembly at the ciliary tip simultaneously in Chlamydomonas reinhardtii LZTFL1 directs BBSome recruitment to the basal body via promoting basal body targeting of Arf-like 6 GTPase BBS3, thus deciding the BBSome amount available for loading onto anterograde IFT trains for entering cilia. Meanwhile, LZTFL1 stabilizes the IFT25/27 component of the IFT-B1 subcomplex in the cell body so as to control its presence and amount at the basal body for entering cilia. Since IFT25/27 promotes BBSome reassembly at the ciliary tip for loading onto retrograde IFT trains, LZTFL1 thus also directs BBSome removal out of cilia. Therefore, LZTFL1 dysfunction deprives the BBSome of ciliary presence and generates Chlamydomonas cells defective in phototaxis. In summary, our data propose that LZTFL1 maintains BBSome dynamics in cilia by such a dual-mode system, providing insights into how LZTFL1 mediates ciliary signaling through maintaining BBSome ciliary dynamics and the pathogenetic mechanism of the BBS disorder as well.


Subject(s)
Chlamydomonas reinhardtii/physiology , Cilia/physiology , Phototaxis , Transcription Factors/physiology , Bardet-Biedl Syndrome , Intracellular Signaling Peptides and Proteins/metabolism , Protein Binding , Signal Transduction
14.
Elife ; 102021 02 15.
Article in English | MEDLINE | ID: mdl-33587040

ABSTRACT

Certain ciliary signaling proteins couple with the BBSome, a conserved complex of Bardet-Biedl syndrome (BBS) proteins, to load onto retrograde intraflagellar transport (IFT) trains for their removal out of cilia in Chlamydomonas reinhardtii. Here, we show that loss of the Arf-like 6 (ARL6) GTPase BBS3 causes the signaling protein phospholipase D (PLD) to accumulate in cilia. Upon targeting to the basal body, BBSomes enter and cycle through cilia via IFT, while BBS3 in a GTP-bound state separates from BBSomes, associates with the membrane, and translocates from the basal body to cilia by diffusion. Upon arriving at the ciliary tip, GTP-bound BBS3 binds and recruits BBSomes to the ciliary membrane for interacting with PLD, thus making the PLD-laden BBSomes available to load onto retrograde IFT trains for ciliary exit. Therefore, BBS3 promotes PLD exit from cilia via the BBSome, providing a regulatory mechanism for ciliary signaling protein removal out of cilia.


Subject(s)
ADP-Ribosylation Factors/metabolism , Chlamydomonas reinhardtii/metabolism , Cilia/metabolism , Phospholipase D/metabolism , ADP-Ribosylation Factors/genetics , Chlamydomonas reinhardtii/enzymology , Chlamydomonas reinhardtii/genetics , Cilia/genetics , Flagella/enzymology , Flagella/genetics , Flagella/metabolism , Phospholipase D/genetics , Protein Transport
15.
Eur J Med Chem ; 199: 112357, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32428793

ABSTRACT

We describe the preparation of thiosialoside-modified poly (methyl vinyl ether-alt-maleic anhydride) as second-generation polymeric conjugates for the inhibition of influenza virus infection. These synthetic glycopolymers show significantly enhanced neuraminidase inhibitory and antiviral activity in enzyme and cellular levels, respectively. The polyvalent thiosialosides also exhibit comparable inhibitory activity to the first-line anti-influenza drugs Zanamivir® and Oseltamivir® against the PR8 influenza virus strain in virus growth inhibition assays, which may be attributed to multivalent binding to neuraminidase on the virion particles, leading to the virion aggregation and further inhibiting the attaching/fusion and releasing steps in the influenza virus life-cycle. These findings suggest that attaching monomeric sialoside with neuraminidase inhibitory activity to a polymeric scaffold will synergistically disturb both the early and late stages of influenza virus infection, and provides a basis for the development of efficacious anti-viral agents against both wild-type and drug-resistant mutant strains.


Subject(s)
Antiviral Agents/pharmacology , Influenza A virus/drug effects , Orthomyxoviridae Infections/drug therapy , Polymers/pharmacology , Sialic Acids/pharmacology , Thioglycosides/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cells, Cultured , Dogs , Dose-Response Relationship, Drug , Madin Darby Canine Kidney Cells/drug effects , Madin Darby Canine Kidney Cells/virology , Microbial Sensitivity Tests , Molecular Structure , Polymers/chemical synthesis , Polymers/chemistry , Sialic Acids/chemical synthesis , Sialic Acids/chemistry , Structure-Activity Relationship , Thioglycosides/chemical synthesis , Thioglycosides/chemistry
16.
Microb Pathog ; 142: 104045, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32035105

ABSTRACT

Peste des petits ruminants (PPR) is a highly contagious and fatal disease of small ruminants, particularly sheep and goats. This disease leads to high morbidity and mortality of small ruminants, thus resulting in devastating economic loss to the livestock industry globally. The severe disease impact has prompted the Food and Agriculture Organization of the United Nations (FAO) and the World Organization for Animal Health (OIE) to develop a global strategy for the control and eradication of PPR by 2030. Over the past decades, the control of PPR is mainly achieved through vaccinating the animals with live-attenuated vaccines, e.g., rinderpest vaccines. As a closely related disease to PPR of large ruminants, rinderpest was eradicated in 2011 and its vaccines subsequently got banned in order to keep rinderpest-free zones. Consequently, it is desirable to develop homologous PPR vaccines to control the disease. The present review summarizes the objectives of PPR control and eradication by focusing on the homologous PPR vaccines.

17.
Proc Natl Acad Sci U S A ; 117(5): 2496-2505, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31953262

ABSTRACT

Bardet-Biedl syndrome (BBS) is a ciliopathy caused by defects in the assembly or distribution of the BBSome, a conserved protein complex. The BBSome cycles via intraflagellar transport (IFT) through cilia to transport signaling proteins. How the BBSome is recruited to the basal body for binding to IFT trains for ciliary entry remains unknown. Here, we show that the Rab-like 5 GTPase IFT22 regulates basal body targeting of the BBSome in Chlamydomonas reinhardtii Our functional, biochemical and single particle in vivo imaging assays show that IFT22 is an active GTPase with low intrinsic GTPase activity. IFT22 is part of the IFT-B1 subcomplex but is not required for ciliary assembly. Independent of its association to IFT-B1, IFT22 binds and stabilizes the Arf-like 6 GTPase BBS3, a BBS protein that is not part of the BBSome. IFT22/BBS3 associates with the BBSome through an interaction between BBS3 and the BBSome. When both IFT22 and BBS3 are in their guanosine triphosphate (GTP)-bound states they recruit the BBSome to the basal body for coupling with the IFT-B1 subcomplex. The GTP-bound BBS3 likely remains to be associated with the BBSome upon ciliary entry. In contrast, IFT22 is not required for the transport of BBSomes in cilia, indicating that the BBSome is transferred from IFT22 to the IFT trains at the ciliary base. In summary, our data propose that nucleotide-dependent recruitment of the BBSome to the basal body by IFT22 regulates BBSome entry into cilia.


Subject(s)
ADP-Ribosylation Factors/metabolism , Basal Bodies/metabolism , Chlamydomonas reinhardtii/metabolism , Flagella/metabolism , GTP Phosphohydrolases/metabolism , ADP-Ribosylation Factors/genetics , Bardet-Biedl Syndrome/genetics , Bardet-Biedl Syndrome/metabolism , Chlamydomonas reinhardtii/genetics , Cilia/genetics , Cilia/metabolism , Flagella/genetics , GTP Phosphohydrolases/genetics , Humans , Protein Binding , Protein Transport
18.
Proc Natl Acad Sci U S A ; 116(31): 15560-15569, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31300538

ABSTRACT

The roles of cellular orientation during trabecular and ventricular wall morphogenesis are unknown, and so are the underlying mechanisms that regulate cellular orientation. Myocardial-specific Numb and Numblike double-knockout (MDKO) hearts display a variety of defects, including in cellular orientation, patterns of mitotic spindle orientation, trabeculation, and ventricular compaction. Furthermore, Numb- and Numblike-null cardiomyocytes exhibit cellular behaviors distinct from those of control cells during trabecular morphogenesis based on single-cell lineage tracing. We investigated how Numb regulates cellular orientation and behaviors and determined that N-cadherin levels and membrane localization are reduced in MDKO hearts. To determine how Numb regulates N-cadherin membrane localization, we generated an mCherry:Numb knockin line and found that Numb localized to diverse endocytic organelles but mainly to the recycling endosome. Consistent with this localization, cardiomyocytes in MDKO did not display defects in N-cadherin internalization but rather in postendocytic recycling to the plasma membrane. Furthermore, N-cadherin overexpression via a mosaic model partially rescued the defects in cellular orientation and trabeculation of MDKO hearts. Our study unravels a phenomenon that cardiomyocytes display spatiotemporal cellular orientation during ventricular wall morphogenesis, and its disruption leads to abnormal trabecular and ventricular wall morphogenesis. Furthermore, we established a mechanism by which Numb modulates cellular orientation and consequently trabecular and ventricular wall morphogenesis by regulating N-cadherin recycling to the plasma membrane.


Subject(s)
Cadherins/metabolism , Heart Ventricles/embryology , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/metabolism , Organogenesis , Animals , Cadherins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout , Myocytes, Cardiac/cytology , Nerve Tissue Proteins/genetics
19.
Protein Expr Purif ; 160: 19-27, 2019 08.
Article in English | MEDLINE | ID: mdl-30904445

ABSTRACT

Hispidalin is a novel antimicrobial peptide isolated from the seeds of Benincasa hispida and is reported to have broad antimicrobial activity against various bacterial and fungal pathogens. To produce significant amounts of Hispidalin, a recombinant Hispidalin with an N-terminal 6 × His tag and an enterokinase sequence, for the first time, was successfully expressed in Escherichia coli or Pichia pastoris cell factory. Results showed that the E. coli-derived recombinant Hispidalin did not show any antimicrobial activity against all the tested strains, whereas the P. pastoris-derived recombinant Hispidalin (rHispidalin) showed a broad antibacterial spectrum against five pathogenic bacteria of both Gram-negative and Gram-positive. rHispidalin also has bactericidal activity and completely killed all of the Staphylococcus aureus within 40 min. Additionally, rHispidalin showed a broad range of thermostability and pH stability, and a hemolytic activity of less than 2% even at a concentration of 300 µg/ml; it was resistant to trypsin and proteinase K, but was moderately sensitive to pepsin and papain. Moreover, rHispidalin effectively permeabilized the cytoplasmic membrane and disrupted the morphology of targeted bacterial cells. After an initial optimization was performed, the amount of rHispidalin accumulation could reach as high as 98.6 µg/ml. These results indicate that Hispidalin could be produced on a large scale by P. pastoris and has a great potential to be utilized as a new antibacterial agent for further development.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/pharmacology , Pichia/genetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Bacteria/drug effects , Bacteria/growth & development , Cucurbitaceae/chemistry , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Drug Stability , Gene Expression , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Pichia/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
20.
J Sci Food Agric ; 99(2): 790-796, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-29998459

ABSTRACT

BACKGROUND: In the present study, we investigated the role of ornithine decarboxylase (ODC) in the methyl jasmonate (MeJA)-regulated postharvest quality maintenance of Agaricus bisporus (J. E. Kange) Imbach button mushrooms by pretreating mushrooms with a specific irreversible inhibitor called α-difluoromethylornithine (DFMO) before exposure to MeJA vapor. RESULTS: Mushrooms were treated with 0 or 100 µmol L-1 MeJA or a combination of 120 µmol L-1 DFMO and 100 µmol L-1 MeJA, respectively, before storage at 4 °C for 21 days. Treatment with MeJA alone induced the increase in ODC activity whereas this effect was greatly suppressed by pretreatment with DFMO. α-Difluoromethylornithine strongly attenuated the effect of MeJA on decreasing cap opening, slowing the decline rate of soluble protein and total sugar, and accumulating total phenolics and flavonoids. α-Difluoromethylornithine pretreatment also counteracted the ability of MeJA to inhibit polyphenol oxidase and lipoxygenase activities, and malondialdehyde production, and to stimulate superoxide dismutase and catalase activities. It also largely downregulated MeJA-induced accumulation of free putrescine (Put). CONCLUSION: These results reveal that ODC is involved in MeJA-regulated postharvest quality retention of button mushrooms, and this involvement is likely to be associated with Put levels. © 2018 Society of Chemical Industry.


Subject(s)
Acetates/pharmacology , Agaricus/chemistry , Agaricus/drug effects , Cyclopentanes/pharmacology , Fungal Proteins/metabolism , Ornithine Decarboxylase/metabolism , Oxylipins/pharmacology , Agaricus/enzymology , Agaricus/growth & development , Catechol Oxidase/metabolism , Flavonoids/analysis , Flavonoids/metabolism , Malondialdehyde/metabolism , Phenols/analysis , Phenols/metabolism , Putrescine/analysis , Putrescine/metabolism , Quality Control , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...