Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Small ; : e2403275, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934359

ABSTRACT

Due to the intrinsic flame-retardant, eutectic electrolytes are considered a promising candidate for sodium-metal batteries (SMBs). However, the high viscosity and ruinous side reaction with Na metal anode greatly hinder their further development. Herein, based on the Lewis acid-base theory, a new eutectic electrolyte (EE) composed of sodium bis(trifluoromethanesulfonyl)imide (NaTFSI), succinonitrile (SN), and fluoroethylene carbonate (FEC) is reported. As a strong Lewis base, the ─C≡N group of SN can effectively weaken the interaction between Na+ and TFSI-, achieving the dynamic equilibrium and reducing the viscosity of EE. Moreover, the FEC additive shows a low energy level to construct thicker and denser solid electrolyte interphase (SEI) on the Na metal surface, which can effectively eliminate the side reaction between EE and Na metal anode. Therefore, EE-1:6 + 5% FEC shows high ionic conductivity (2.62 mS cm-1) and ultra-high transference number of Na+ (0.96). The Na||Na symmetric cell achieves stable Na plating/stripping for 1100 h and Na||Na3V2(PO4)3/C cell shows superior long-term cycling stability over 2000 cycles (99.1% retention) at 5 C. More importantly, the Na||NVP/C pouch cell demonstrates good cycling performance of 102.1 mAh g-1 after 135 cycles at 0.5 C with an average coulombic efficiency of 99.63%.

2.
Adv Mater ; 36(5): e2309376, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37914405

ABSTRACT

Covalent triazine frameworks (CTFs) are emerging as a promising molecular platform for photocatalysis. Nevertheless, the construction of highly effective charge transfer pathways in CTFs for oriented delivery of photoexcited electrons to enhance photocatalytic performance remains highly challenging. Herein, a molecular engineering strategy is presented to achieve highly efficient charge separation and transport in both the lateral and vertical directions for solar-to-formate conversion. Specifically, a large π-delocalized and π-stacked Schottky junction (Ru-Th-CTF/RGO) that synergistically knits a rebuilt extended π-delocalized network of the D-A1 -A2 system (multiple donor or acceptor units, Ru-Th-CTF) with reduced graphene oxide (RGO) is developed. It is verified that the single-site Ru units in Ru-Th-CTF/RGO act as effective secondary electron acceptors in the lateral direction for multistage charge separation/transport. Simultaneously, the π-stacked and covalently bonded graphene is regarded as a hole extraction layer, accelerating the separation/transport of the photogenerated charges in the vertical direction over the Ru-Th-CTF/RGO Schottky junction with full use of photogenerated electrons for the reduction reaction. Thus, the obtained photocatalyst has an excellent CO2 -to-formate conversion rate (≈11050 µmol g-1 h-1 ) and selectivity (≈99%), producing a state-of-the-art catalyst for the heterogeneous conversion of CO2 to formate without an extra photosensitizer.

3.
J Colloid Interface Sci ; 649: 616-625, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37364461

ABSTRACT

Transition metal phosphides (TMPs) with unique metalloid features have been promised great application potential in developing high-efficiency electrode materials for electrochemical energy storage. Nevertheless, sluggish ion transportation and poor cycling stability are the critical hurdles limiting their application prospects. Herein, we presented the metal-organic framework-mediated construction of ultrafine Ni2P immobilized in reduced graphene oxide (rGO). Nano-porous two-dimensional (2D) Ni-metal-organic framework (Ni-MOF) was grown on holey graphene oxide (Ni(BDC)-HGO), followed by MOF-mediated tandem pyrolysis (carbonization and phosphidation; Ni(BDC)-HGO-X-P, X denoted carbonization temperature and P represented phosphidation). Structural analysis revealed that the open-framework structure in Ni(BDC)-HGO-X-Ps had endowed them with excellent ion conductivity. The Ni2P wrapped by carbon shells and the PO bonds linking between Ni2P and rGO ensured the better structural stability of Ni(BDC)-HGO-X-Ps. The resulting Ni(BDC)-HGO-400-P delivered a capacitance of 2333.3 F g-1 at 1 A g-1 in a 6 M KOH aqueous electrolyte. More importantly, Ni(BDC)-HGO-400-P//activated carbon, the assembled asymmetric supercapacitor with an energy density of 64.5 Wh kg-1 and a power density of 31.7 kW kg-1, almost maintained its initial capacitance after 10,000 cycles. Furthermore, in situ electrochemical-Raman measurements were exploited to demonstrate the electrochemical changes of Ni(BDC)-HGO-400-P throughout the charging and discharging processes. This study has further shed light on the design rationality of TMPs for optimizing supercapacitor performance.

4.
Nat Commun ; 14(1): 3066, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37244894

ABSTRACT

Solid polymer electrolytes are considered among the most promising candidates for developing practical solid-state sodium batteries. However, moderate ionic conductivity and narrow electrochemical windows hinder their further application. Herein, inspired by the Na+/K+ conduction in biological membranes, we report a (-COO-)-modified covalent organic framework (COF) as a Na-ion quasi-solid-state electrolyte with sub-nanometre-sized Na+ transport zones (6.7-11.6 Å) created by adjacent -COO- groups and COF inwalls. The quasi-solid-state electrolyte enables selective Na+ transport along specific areas that are electronegative with sub-nanometre dimensions, resulting in a Na+ conductivity of 1.30×10-4 S cm-1 and oxidative stability of up to 5.32 V (versus Na+/Na) at 25 ± 1 °C. Testing the quasi-solid-state electrolyte in Na||Na3V2(PO4)3 coin cell configuration demonstrates fast reaction dynamics, low polarization voltages, and a stable cycling performance over 1000 cycles at 60 mA g-1 and 25 ± 1 °C with a 0.0048% capacity decay per cycle and a final discharge capacity of 83.5 mAh g-1.

5.
Small ; 19(36): e2302316, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37119477

ABSTRACT

Noncovalent modification of carbon materials with redox-active organic molecules has been considered as an effective strategy to improve the electrochemical performance of supercapacitors. However, their low loading mass, slow electron transfer rate, and easy dissolution into the electrolyte greatly limit further practical applications. Herein, this work reports dual molecules (1,5-dihydroxyanthraquinone (DHAQ) and 2,6-diamino anthraquinone (DAQ)) cooperatively confined in-between edge-oxygen-rich graphene sheets as high-performance electrodes for supercapacitors. Cooperative electrostatic-interaction on the edge-oxygen sites and π-π interaction in-between graphene sheets lead to the increased loading mass and structural stability of dual molecules. Moreover, the electron tunneling paths constructed between edge-oxygen groups and dual molecules can effectively boost the electron transfer rate and redox reaction kinetics, especially at ultrahigh current densities. As a result, the as-obtained electrode exhibits a high capacitance of 507 F g-1 at 0.5 A g-1 , and an unprecedented rate capability (203 F g-1 at 200 A g-1 ). Moreover, the assembled symmetrical supercapacitor achieves a high energy density of 17.1 Wh kg-1 and an ultrahigh power density of 140 kW kg-1 , as well as remarkable stability with a retention of 86% after 50 000 cycles. This work may open a new avenue for the efficient utilization of organic materials in energy storage and conversion.

6.
Small ; 19(18): e2207227, 2023 May.
Article in English | MEDLINE | ID: mdl-36720006

ABSTRACT

Developing efficient and robust metal-nitrogen-carbon electrocatalysts for oxygen reduction reaction (ORR) is of great significance for the application of hydrogen-oxygen fuel cells and metal-air batteries. Herein, a coordination engineering strategy is developed to improve the ORR kinetics and stability of cobalt-nitrogen-carbon (Co-N-C) electrocatalysts by grafting the oxygen-rich graphene quantum dots (GQDs) onto the zeolite imidazole frameworks (ZIFs) precursors. The optimized oxygen-rich GQDs-functionalized Co-N-C (G-CoNOC) electrocatalyst demonstrates an increased mass activity, nearly two times higher than that of pristine defective Co-N-C electrocatalyst, and retains a stability of 90.0% after 200 h, even superior to the commercial Pt/C. Comprehensive investigations demonstrate that the GQDs coordination can not only decrease carbon defects of Co-N-C electrocatalysts, improving the electron transfer efficiency and resistance to the destructive free radicals from H2 O2 , but also optimize the electronic structure of atomic Co active site to achieve a desired adsorption energy of OOH- , leading to enhanced ORR kinetics and stability by promoting further H2 O2 reduction, as confirmed by theoretical calculations and experimental results. Such a coordination engineering strategy provides a new perspective for the development of highly active noble-metal-free electrocatalysts for ORR.

7.
Adv Sci (Weinh) ; 9(36): e2204949, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36285692

ABSTRACT

The development of low-cost, high-efficiency, and stable electrocatalysts for hydrogen evolution reaction (HER) under alkaline conditions is a key challenge in water electrolysis. Here, an interfacial engineering strategy that is capable of simultaneously regulating nanoscale structure, electronic structure, and interfacial structure of Mo2 N quantum dots decorated on conductive N-doped graphene via codoping single-atom Al and O (denoted as AlO@Mo2 N-NrGO) is reported. The conversion of Anderson polyoxometalates anion cluster ([AlMo6 O24 H6 ]3- , denoted as AlMo6) to Mo2 N quantum dots not only result in the generation of more exposed active sites but also in situ codoping atomically dispersed Al and O, that can fine-tune the electronic structure of Mo2 N. It is also identified that the surface reconstruction of AlOH hydrates in AlO@Mo2 N quantum dots plays an essential role in enhancing hydrophilicity and lowering the energy barriers for water dissociation and hydrogen desorption, resulting in a remarkable alkaline HER performance, even better than the commercial 20% Pt/C. Moreover, the strong interfacial interaction (MoN bonds) between AlO@Mo2 N and N-doped graphene can significantly improve electron transfer efficiency and interfacial stability. As a result, outstanding stability over 300 h at a current density higher than 100 mA cm-2 is achieved, demonstrating great potential for the practical application of this catalyst.

8.
Adv Mater ; 34(17): e2200865, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35179809

ABSTRACT

Dehumidification is significant for environmental sustainability and human health. Traditional dehumidification methods involve significant energy consumption and have negative impact on the environment. The core challenge is to expose hygroscopic surfaces to the air, and appropriately store the captured water and avoid surface inactivation. Here, a nanostructured moisture-absorbing gel (N-MAG) for passive dehumidification, which consists of a hydrophilic nanocellulose network functionalized by hygroscopic lithium chloride, is reported. The interconnected nanocellulose can transfer the captured water to the internal space of the bulky N-MAG, eliminating water accumulation near the surfaces and hence enabling high-rate moisture absorption. The N-MAG can reduce the relative humidity from 96.7% to 28.7% in 6 h, even if the space is over 2 × 104 times of its own volume. The condensed water can be completely confined in the N-MAG, overcoming the problem of environmental pollution. This research brings a new perspective for sustainable humidity management without energy consumption and with positive environmental footprint.

9.
Chemosphere ; 294: 133782, 2022 May.
Article in English | MEDLINE | ID: mdl-35093425

ABSTRACT

The development of photocatalysts for efficient tetracycline (TC) degradation under visible light is urgently needed yet remains a great challenge. Most semiconductor photocatalysts with low specific surface area are easy to agglomerate in solution and unfavorable for enriching pollutants. Herein, we present the preparation of pomegranate-shaped zinc oxide@zeolitic imidazolate framework (ZnO@ZIF-8) by in situ growth of ZIF-8 on a petal-shaped ZnO template that enhances the adsorption and photocatalytic degradation of TC. ZnO@ZIF-8 exhibits an excellent photostability and a TC photodegradation efficiency of 91% under visible light (λ > 420 nm) in 50 min at room temperature, which can be recycled over five times without any loss of activity. Moreover, the plausible photocatalysis reaction mechanism and the degradation intermediates are elucidated with the aid of three-dimensional excitation-emission matrix spectra and liquid chromatography-mass spectrometry system. This study offers new insights into the design of antibiotic degradation photocatalysts and the development of photocatalysts with broad-spectrum responses for efficient TC elimination.


Subject(s)
Pomegranate , Zeolites , Zinc Oxide , Anti-Bacterial Agents , Catalysis , Light , Tetracycline
10.
Nanomicro Lett ; 13(1): 129, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34138344

ABSTRACT

Due to their rapid power delivery, fast charging, and long cycle life, supercapacitors have become an important energy storage technology recently. However, to meet the continuously increasing demands in the fields of portable electronics, transportation, and future robotic technologies, supercapacitors with higher energy densities without sacrificing high power densities and cycle stabilities are still challenged. Transition metal compounds (TMCs) possessing high theoretical capacitance are always used as electrode materials to improve the energy densities of supercapacitors. However, the power densities and cycle lives of such TMCs-based electrodes are still inferior due to their low intrinsic conductivity and large volume expansion during the charge/discharge process, which greatly impede their large-scale applications. Most recently, the ideal integrating of TMCs and conductive carbon skeletons is considered as an effective solution to solve the above challenges. Herein, we summarize the recent developments of TMCs/carbon hybrid electrodes which exhibit both high energy/power densities from the aspects of structural design strategies, including conductive carbon skeleton, interface engineering, and electronic structure. Furthermore, the remaining challenges and future perspectives are also highlighted so as to provide strategies for the high energy/power TMCs/carbon-based supercapacitors.

11.
Small ; 16(38): e2003557, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32815308

ABSTRACT

Tin (Sn) is considered to be an ideal candidate for the anode of sodium ion batteries. However, the design of Sn-based electrodes with maintained long-term stability still remains challenging due to their huge volume expansion (≈420%) and easy pulverization during cycling. Herein, a facile and versatile strategy for the synthesis of nitrogen-doped graphene quantum dot (GQD) edge-anchored Sn nanodots as the pillars into reduced graphene oxide blocks (NGQD/Sn-NG) for ultrafast and ultrastable sodium-ion storage is reported. Sn nanodots (2-5 nm) anchored at the edges of "octopus-like" GQDs via covalent SnOC/SnNC bonds function as the pillars that ensure fast Na-ion/electron transport across the graphene blocks. Moreover, the chemical and spatial (layered structure) confinements not only suppress Sn aggregation, but also function as physical barriers for buffering volume change upon sodiation/desodiation. Consequently, the NGQD/Sn-NG with high structural stability exhibits excellent rate performance (555 mAh g-1 at 0.1 A g-1 and 198 mAh g-1 at 10 A g-1 ) and ultra-long cycling stability (184 mAh g-1 remaining even after 2000 cycles at 5 A g-1 ). The confinement-induced synthesis together with remarkable electrochemical performances should shed light on the practical application of highly attractive tin-based anodes for next generation rechargeable sodium batteries.

12.
ACS Appl Mater Interfaces ; 12(24): 27499-27507, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32357295

ABSTRACT

Biomass-derived carbon is a promising sustainable anode material for sodium-ion batteries (SIBs). Although the electrochemical performance can be improved by introducing functional groups, the selective introduction of single functional groups into biomass carbon remains difficult. Here, we overcome this challenge by developing a wood-derived carbon with selectively introduced C═O groups by combining tetramethoxysilane (TMOS) with wood cellulose pulps. The integration of TMOS introduces abundant C═O groups into the carbon during the polycondensation and pyrolysis process. The C═O groups play a dominant role in anode surface-controlled processes, and this leads to improvements in pseudo-capacity and fast electrode process kinetics. Besides, the introduction of C═O groups generates oxygen functional active sites that promote Na+ adsorption and creates a sufficiently large graphene interlayer distance. The as-obtained carbon shows a high capacity of 330 mAh g-1 at 40 mA g-1 and excellent cycling stability. Moreover, our strategy is simple and uses wood cellulose pulps as precursors. It therefore enables low-cost and large-scale synthesis of carbon anode materials for SIBs.

13.
ACS Appl Mater Interfaces ; 12(10): 11669-11678, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32057233

ABSTRACT

High surface area, good conductivity, and high mechanical strength are important for carbon nanofiber fabrics (CNFs) as high-performance supercapacitor electrodes. However, it remains a big challenge because of the trade-off between the strong and continuous conductive network and a well-developed porous structure. Herein, we report a simple strategy to integrate these properties into the electrospun CNFs by adding graphene quantum dots (GQDs). The uniformly embedded GQDs play a crucial bifunctional role in constructing an entire reinforcing phase and conductive network. Compared with the pure CNF, the GQD-reinforced activated CNF exhibits a greatly enlarged surface area from 140 to 2032 m2 g-1 as well as a significantly improved conductivity and strength of 5.5 and 2.5 times, respectively. The mechanism of the robust reinforcing effect is deeply investigated. As a freestanding supercapacitor electrode, the fabric performs a high capacitance of 335 F g-1 at 1 A g-1 and extremely high capacitance retentions of 77% at 100 A g-1 and 45% at 500 A g-1. Importantly, the symmetric device can be charged to 80% capacitance within only 2.2 s, showing great potential for high-power startup supplies.

14.
Nanomicro Lett ; 12(1): 146, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-34138132

ABSTRACT

The development of lithium-sulfur batteries (LSBs) is restricted by their poor cycle stability and rate performance due to the low conductivity of sulfur and severe shuttle effect. Herein, an N, O co-doped graphene layered block (NOGB) with many dents on the graphene sheets is designed as effective sulfur host for high-performance LSBs. The sulfur platelets are physically confined into the dents and closely contacted with the graphene scaffold, ensuring structural stability and high conductivity. The highly doped N and O atoms can prevent the shuttle effect of sulfur species by strong chemical adsorption. Moreover, the micropores on the graphene sheets enable fast Li+ transport through the blocks. As a result, the obtained NOGB/S composite with 76 wt% sulfur content shows a high capacity of 1413 mAh g-1 at 0.1 C, good rate performance of 433 mAh g-1 at 10 C, and remarkable stability with 526 mAh g-1 at after 1000 cycles at 1 C (average decay rate: 0.038% per cycle). Our design provides a comprehensive route for simultaneously improving the conductivity, ion transport kinetics, and preventing the shuttle effect in LSBs.

15.
Nanomicro Lett ; 13(1): 8, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-34138191

ABSTRACT

Carbon-based electric double layer capacitors (EDLCs) hold tremendous potentials due to their high-power performance and excellent cycle stability. However, the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte. Herein, 3D carbon frameworks (3DCFs) constructed by interconnected nanocages (10-20 nm) with an ultrathin wall of ca. 2 nm have been fabricated, which possess high specific surface area, hierarchical porosity and good conductive network. After deoxidization, the deoxidized 3DCF (3DCF-DO) exhibits a record low IR drop of 0.064 V at 100 A g-1 and ultrafast charge/discharge rate up to 10 V s-1. The related device can be charged up to 77.4% of its maximum capacitance in 0.65 s at 100 A g-1 in 6 M KOH. It has been found that the 3DCF-DO has a great affinity to EMIMBF4, resulting in a high specific capacitance of 174 F g-1 at 1 A g-1, and a high energy density of 34 Wh kg-1 at an ultrahigh power density of 150 kW kg-1 at 4 V after a fast charge in 1.11 s. This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.

16.
J Colloid Interface Sci ; 561: 257-264, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31830737

ABSTRACT

Magnesium oxide (MgO) nanosheets and hydrogen peroxide (H2O2) are respectively employed as a photocatalyst and an oxidant to enhance the photocatalytic efficiency for photo-degradation of methylene blue (MB). During the photocatalytic process, highly-oxidizing magnesium dioxide (MgO2) is generated by reacting with H2O2 on the edge of MgO nanosheets, which is verified by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HR-TEM). The synergistic catalysis of H2O2, MgO2 (highly-oxidizing) and MgO (photocatalysis) has significantly improved the photocatalytic efficiency. The photocatalytic efficiency of MgO nanosheets with H2O2 under visible-light irradiation reaches 98.1%, which is 3.2 times greater than that without H2O2 under visible light (30.5%). Moreover, the photocatalytic efficiency is comparable with that of traditional photocatalysts, such as titanium dioxide (TiO2), graphitic carbon nitride (g-C3N4), etc. This study indicates that the synergistic effect of the homologous oxide catalyst (MgO) effectively improves photo-degradation efficiency via in-situ generating a highly-oxidizing metal peroxide (MgO2) during the photocatalytic process.

17.
J Colloid Interface Sci ; 561: 793-800, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31791697

ABSTRACT

The photo-Fenton activity of ZnFe2O4 was enhanced by the ZnFe2O4/α-Fe2O3 (ZFO/FO) heterostructure synthesized via a one-step hydrothermal method. The degradation efficiency was further improved by loading Pt nanoparticles on the surface of the heterostructure. The degradation efficiencies of MB for ZnFe2O4, ZFO/FO, and ZFO/FO/Pt were 57.82%, 83.71%, and 99.96%, respectively. This can be ascribed to Pt working as an "electron bridge" to transfer the photo-generated electrons from the α-Fe2O3 to solution, thus improving the photo-Fenton efficiency. A noteworthy feature of this study is the successful strategy to fabricate heterostructures photo-Fenton for solving environmental problems at the alkaline condition of pH 9.

18.
Chemistry ; 25(19): 5022-5027, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30697831

ABSTRACT

To optimize the cycle life and rate performance of lithium-ion batteries (LIBs), ultra-fine Fe2 O3 nanowires with a diameter of approximately 2 nm uniformly anchored on a cross-linked graphene ribbon network are fabricated. The unique three-dimensional structure can effectively improve the electrical conductivity and facilitate ion diffusion, especially cross-plane diffusion. Moreover, Fe2 O3 nanowires on graphene ribbons (Fe2 O3 /GR) are easily accessible for lithium ions compared with the traditional graphene sheets (Fe2 O3 /GS). In addition, the well-developed elastic network can not only undergo the drastic volume expansion during repetitive cycling, but also protect the bulk electrode from further pulverization. As a result, the Fe2 O3 /GR hybrid exhibits high rate and long cycle life Li storage performance (632 mAh g-1 at 5 A g-1 , and 471 mAh g-1 capacity maintained even after 3000 cycles). Especially at high mass loading (≈4 mg cm-2 ), the Fe2 O3 /GR can still deliver higher reversible capacity (223 mAh g-1 even at 2 A g-1 ) compared with the Fe2 O3 /GS (37 mAh g-1 ) for LIBs.

19.
Chem Commun (Camb) ; 55(5): 596-599, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30480678

ABSTRACT

Fluorescent nanoarchitectures, such as hydrophobic micelles and hydrophilic vesicles decorated with fluorescent carbon nanoparticles, were fabricated from one fatty acid by means of photo-triggering. The biomimetic nanostructures, like cell membrane structures, have applications in fluorescence imaging in both the cell cytoplasm and nucleus. Besides, hydrophobic micelles can be used as very stable fluorescent inks.


Subject(s)
Biomimetic Materials/chemistry , Fatty Acids/chemistry , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , A549 Cells , Biomimetic Materials/chemical synthesis , Biomimetic Materials/radiation effects , Biomimetic Materials/toxicity , Carbon/chemistry , Carbon/radiation effects , Carbon/toxicity , Fatty Acids/radiation effects , Fatty Acids/toxicity , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/radiation effects , Fluorescent Dyes/toxicity , Humans , Hydrophobic and Hydrophilic Interactions , Ink , Membranes, Artificial , Micelles , Microscopy, Confocal , Nanoparticles/radiation effects , Nanoparticles/toxicity , Ultraviolet Rays , Water/chemistry
20.
Macromol Rapid Commun ; 39(13): e1800152, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29774629

ABSTRACT

Amphiphilic nanoreactors have been recently used to fabricate photoluminescent carbon-rich polymer nanodots (PCPNs). However, the applications of PCPNs have been limited by their requirements for high temperature and toxic organic solvents or catalysts and the difficult control of their luminescent properties. Herein, a novel and facile strategy is reported for the synthesis of controllable PCPNs. This strategy involves the use of in situ vesicular nanoreactors under mild photoirradiation with fatty acid as the precursor. The conjugation degree of the uniformly sized PCPNs can be increased by extending photoreaction time, thus enabling the tuning of the optical properties of PCPNs. The PCPNs, which feature controllable and outstanding luminescent properties, low cytotoxicity, and biocompatibility, are successfully applied in bioimaging and as fluorescent ink. The present strategy is an attractive and facile platform for the preparation of carbon-rich nanomaterials with controllable photoluminescence.


Subject(s)
Carbon/chemistry , Fatty Acids/chemistry , Luminescence , Nanostructures/chemistry , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...