Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(D1): D1588-D1596, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37933857

ABSTRACT

Perennial woody plants hold vital ecological significance, distinguished by their unique traits. While significant progress has been made in their genomic and functional studies, a major challenge persists: the absence of a comprehensive reference platform for collection, integration and in-depth analysis of the vast amount of data. Here, we present PPGR (Resource for Perennial Plant Genomes and Regulation; https://ngdc.cncb.ac.cn/ppgr/) to address this critical gap, by collecting, integrating, analyzing and visualizing genomic, gene regulation and functional data of perennial plants. PPGR currently includes 60 species, 847 million protein-protein/TF (transcription factor)-target interactions, 9016 transcriptome samples under various environmental conditions and genetic backgrounds. Noteworthy is the focus on genes that regulate wood production, seasonal dormancy, terpene biosynthesis and leaf senescence representing a wealth of information derived from experimental data, literature mining, public databases and genomic predictions. Furthermore, PPGR incorporates a range of multi-omics search and analysis tools to facilitate browsing and application of these extensive datasets. PPGR represents a comprehensive and high-quality resource for perennial plants, substantiated by an illustrative case study that demonstrates its capacity in unraveling gene functions and shedding light on potential regulatory processes.


Subject(s)
Databases, Genetic , Genome, Plant , Genomics , Plants/genetics , Transcriptome
2.
Nucleic Acids Res ; 52(D1): D1315-D1326, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37870452

ABSTRACT

Human endogenous retroviruses (HERVs), as remnants of ancient exogenous retrovirus infected and integrated into germ cells, comprise ∼8% of the human genome. These HERVs have been implicated in numerous diseases, and extensive research has been conducted to uncover their specific roles. Despite these efforts, a comprehensive source of HERV-disease association still needs to be added. To address this gap, we introduce the HervD Atlas (https://ngdc.cncb.ac.cn/hervd/), an integrated knowledgebase of HERV-disease associations manually curated from all related published literature. In the current version, HervD Atlas collects 60 726 HERV-disease associations from 254 publications (out of 4692 screened literature), covering 21 790 HERVs (21 049 HERV-Terms and 741 HERV-Elements) belonging to six types, 149 diseases and 610 related/affected genes. Notably, an interactive knowledge graph that systematically integrates all the HERV-disease associations and corresponding affected genes into a comprehensive network provides a powerful tool to uncover and deduce the complex interplay between HERVs and diseases. The HervD Atlas also features a user-friendly web interface that allows efficient browsing, searching, and downloading of all association information, research metadata, and annotation information. Overall, the HervD Atlas is an essential resource for comprehensive, up-to-date knowledge on HERV-disease research, potentially facilitating the development of novel HERV-associated diagnostic and therapeutic strategies.


Subject(s)
Endogenous Retroviruses , Knowledge Bases , Virus Diseases , Humans , Virus Diseases/genetics , Virus Diseases/virology , Atlases as Topic , Internet Use
3.
Nucleic Acids Res ; 52(D1): D1121-D1130, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37843156

ABSTRACT

Biomarkers play an important role in various area such as personalized medicine, drug development, clinical care, and molecule breeding. However, existing animals' biomarker resources predominantly focus on human diseases, leaving a significant gap in non-human animal disease understanding and breeding research. To address this limitation, we present BioKA (Biomarker Knowledgebase for Animals, https://ngdc.cncb.ac.cn/bioka), a curated and integrated knowledgebase encompassing multiple animal species, diseases/traits, and annotated resources. Currently, BioKA houses 16 296 biomarkers associated with 951 mapped diseases/traits across 31 species from 4747 references, including 11 925 gene/protein biomarkers, 1784 miRNA biomarkers, 1043 mutation biomarkers, 773 metabolic biomarkers, 357 circRNA biomarkers and 127 lncRNA biomarkers. Furthermore, BioKA integrates various annotations such as GOs, protein structures, protein-protein interaction networks, miRNA targets and so on, and constructs an interactive knowledge network of biomarkers including circRNA-miRNA-mRNA associations, lncRNA-miRNA associations and protein-protein associations, which is convenient for efficient data exploration. Moreover, BioKA provides detailed information on 308 breeds/strains of 13 species, and homologous annotations for 8784 biomarkers across 16 species, and offers three online application tools. The comprehensive knowledge provided by BioKA not only advances human disease research but also contributes to a deeper understanding of animal diseases and supports livestock breeding.


Subject(s)
Biomarkers , Knowledge Bases , Animals , MicroRNAs/genetics , Proteins , RNA, Circular , RNA, Long Noncoding
4.
Mol Cancer Res ; 21(7): 691-697, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37027007

ABSTRACT

Cancer is one of the leading causes of human death. As metabolomics techniques become more and more widely used in cancer research, metabolites are increasingly recognized as crucial factors in both cancer diagnosis and treatment. In this study, we developed MACdb (https://ngdc.cncb.ac.cn/macdb), a curated knowledgebase to recruit the metabolic associations between metabolites and cancers. Unlike conventional data-driven resources, MACdb integrates cancer-metabolic knowledge from extensive publications, providing high quality metabolite associations and tools to support multiple research purposes. In the current implementation, MACdb has integrated 40,710 cancer-metabolite associations, covering 267 traits from 17 categories of cancers with high incidence or mortality, based entirely on manual curation from 1,127 studies reported in 462 publications (screened from 5,153 research papers). MACdb offers intuitive browsing functions to explore associations at multi-dimensions (metabolite, trait, study, and publication), and constructs knowledge graph to provide overall landscape among cancer, trait, and metabolite. Furthermore, NameToCid (map metabolite name to PubChem Cid) and Enrichment tools are developed to help users enrich the association of metabolites with various cancer types and traits. IMPLICATION: MACdb paves an informative and practical way to evaluate cancer-metabolite associations and has a great potential to help researchers identify key predictive metabolic markers in cancers.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Metabolomics/methods , Knowledge Bases
SELECTION OF CITATIONS
SEARCH DETAIL
...