Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol ; 147(1): 78, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695952

ABSTRACT

Aging is associated with cell senescence and is the major risk factor for AD. We characterized premature cell senescence in postmortem brains from non-diseased controls (NDC) and donors with Alzheimer's disease (AD) using imaging mass cytometry (IMC) and single nuclear RNA (snRNA) sequencing (> 200,000 nuclei). We found increases in numbers of glia immunostaining for galactosidase beta (> fourfold) and p16INK4A (up to twofold) with AD relative to NDC. Increased glial expression of genes related to senescence was associated with greater ß-amyloid load. Prematurely senescent microglia downregulated phagocytic pathways suggesting reduced capacity for ß-amyloid clearance. Gene set enrichment and pseudo-time trajectories described extensive DNA double-strand breaks (DSBs), mitochondrial dysfunction and ER stress associated with increased ß-amyloid leading to premature senescence in microglia. We replicated these observations with independent AD snRNA-seq datasets. Our results describe a burden of senescent glia with AD that is sufficiently high to contribute to disease progression. These findings support the hypothesis that microglia are a primary target for senolytic treatments in AD.


Subject(s)
Alzheimer Disease , Cellular Senescence , Transcriptome , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Humans , Cellular Senescence/physiology , Cellular Senescence/genetics , Aged , Male , Aged, 80 and over , Female , Microglia/pathology , Microglia/metabolism , Brain/pathology , Brain/metabolism , Amyloid beta-Peptides/metabolism , Neuroglia/pathology , Neuroglia/metabolism
2.
Nat Commun ; 15(1): 2243, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472200

ABSTRACT

Brain perfusion and blood-brain barrier (BBB) integrity are reduced early in Alzheimer's disease (AD). We performed single nucleus RNA sequencing of vascular cells isolated from AD and non-diseased control brains to characterise pathological transcriptional signatures responsible for this. We show that endothelial cells (EC) are enriched for expression of genes associated with susceptibility to AD. Increased ß-amyloid is associated with BBB impairment and a dysfunctional angiogenic response related to a failure of increased pro-angiogenic HIF1A to increased VEGFA signalling to EC. This is associated with vascular inflammatory activation, EC senescence and apoptosis. Our genomic dissection of vascular cell risk gene enrichment provides evidence for a role of EC pathology in AD and suggests that reducing vascular inflammatory activation and restoring effective angiogenesis could reduce vascular dysfunction contributing to the genesis or progression of early AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Angiogenesis , Brain/metabolism , Amyloid beta-Peptides/metabolism , Gene Expression Profiling
3.
Elife ; 122023 Dec 04.
Article in English | MEDLINE | ID: mdl-38047913

ABSTRACT

Mathys et al. conducted the first single-nucleus RNA-seq (snRNA-seq) study of Alzheimer's disease (AD) (Mathys et al., 2019). With bulk RNA-seq, changes in gene expression across cell types can be lost, potentially masking the differentially expressed genes (DEGs) across different cell types. Through the use of single-cell techniques, the authors benefitted from increased resolution with the potential to uncover cell type-specific DEGs in AD for the first time. However, there were limitations in both their data processing and quality control and their differential expression analysis. Here, we correct these issues and use best-practice approaches to snRNA-seq differential expression, resulting in 549 times fewer DEGs at a false discovery rate of 0.05. Thus, this study highlights the impact of quality control and differential analysis methods on the discovery of disease-associated genes and aims to refocus the AD research field away from spuriously identified genes.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Single-Cell Gene Expression Analysis , Quality Control , RNA, Small Nuclear , RNA-Seq
4.
Nat Commun ; 14(1): 5247, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37640701

ABSTRACT

Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.


Subject(s)
Microglia , Neurodegenerative Diseases , Animals , Mice , Neurodegenerative Diseases/genetics , Macrophages , Myeloid Cells , Genetic Drift
5.
J Neuroinflammation ; 19(1): 247, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36199077

ABSTRACT

Sex differences have been identified in many diseases associated with dysregulated immune responses, including Alzheimer's disease (AD), for which approximately two-thirds of patients are women. An accumulating body of research indicates that microglia may play a causal role in the pathogenesis of this disease. We hypothesised that sex differences in the transcriptome of human myeloid cells may contribute to the sex difference observed in AD prevalence. To explore this, we assessed bulk and single-nuclear RNA sequencing data sets generated from four human derived myeloid cell populations: post-mortem microglial nuclei, peripheral monocytes, monocyte-derived macrophages (MDMs) and induced pluripotent stem cell derived microglial-like cells (MGLs). We found that expression of AD risk genes, gene signatures associated with the inflammatory response in AD, and genes related to proinflammatory immune responses were enriched in microglial nuclei isolated from aged female donors without ante-mortem neurological disease, relative to those from males. In addition, these inflammation-associated gene sets were found to be enriched in peripheral monocytes isolated from postmenopausal women and in MDMs obtained from premenopausal individuals relative to age-matched males. Expression of these gene sets did not differ in MDMs derived from women whose blood was sampled across the menstrual cycle or in MGLs cultured with 17ß-oestradiol. This suggests that the observed gene set enrichments in myeloid cells from women were not being driven by acute hormonal influences. Together, these data support the hypothesis that the increased prevalence of AD in women may be partly explained by a myeloid cell phenotype biased towards expression of biological processes relevant to AD.


Subject(s)
Alzheimer Disease , Aged , Alzheimer Disease/pathology , Estradiol/metabolism , Female , Humans , Male , Microglia/metabolism , Myeloid Cells/metabolism , Sex Characteristics
6.
Acta Neuropathol ; 143(1): 75-91, 2022 01.
Article in English | MEDLINE | ID: mdl-34767070

ABSTRACT

To better define roles that astrocytes and microglia play in Alzheimer's disease (AD), we used single-nuclei RNA-sequencing to comprehensively characterise transcriptomes in astrocyte and microglia nuclei selectively enriched during isolation post-mortem from neuropathologically defined AD and control brains with a range of amyloid-beta and phospho-tau (pTau) pathology. Significant differences in glial gene expression (including AD risk genes expressed in both the astrocytes [CLU, MEF2C, IQCK] and microglia [APOE, MS4A6A, PILRA]) were correlated with tissue amyloid or pTau expression. The differentially expressed genes were distinct between with the two cell types and pathologies, although common (but cell-type specific) gene sets were enriched with both pathologies in each cell type. Astrocytes showed enrichment for proteostatic, inflammatory and metal ion homeostasis pathways. Pathways for phagocytosis, inflammation and proteostasis were enriched in microglia and perivascular macrophages with greater tissue amyloid, but IL1-related pathway enrichment was found specifically in association with pTau. We also found distinguishable sub-clusters in the astrocytes and microglia characterised by transcriptional signatures related to either homeostatic functions or disease pathology. Gene co-expression analyses revealed potential functional associations of soluble biomarkers of AD in astrocytes (CLU) and microglia (GPNMB). Our work highlights responses of both astrocytes and microglia for pathological protein clearance and inflammation, as well as glial transcriptional diversity in AD.


Subject(s)
Alzheimer Disease/pathology , Astrocytes/metabolism , Brain/pathology , Microglia/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Brain/metabolism , Female , Humans , Male , Transcriptome
7.
Plant Cell Environ ; 40(4): 462-472, 2017 Apr.
Article in English | MEDLINE | ID: mdl-26754426

ABSTRACT

Abiotic stress is one of the main threats affecting crop growth and production. An understanding of the molecular mechanisms that underpin plant responses against environmental insults will be crucial to help guide the rational design of crop plants to counter these challenges. A key feature during abiotic stress is the production of nitric oxide (NO), an important concentration dependent, redox-related signalling molecule. NO can directly or indirectly interact with a wide range of targets leading to the modulation of protein function and the reprogramming of gene expression. The transfer of NO bioactivity can occur through a variety of potential mechanisms but chief among these is S-nitrosylation, a prototypic, redox-based, post-translational modification. However, little is known about this pivotal molecular amendment in the regulation of abiotic stress signalling. Here, we describe the emerging knowledge concerning the function of NO and S-nitrosylation during plant responses to abiotic stress.


Subject(s)
Nitric Oxide/metabolism , Plants/metabolism , Stress, Physiological , Models, Biological , Nitric Oxide/biosynthesis , Protein Processing, Post-Translational , Temperature
8.
Interdiscip Sci ; 4(4): 256-67, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23354814

ABSTRACT

Vps mediated vesicular transport is important for transferring macromolecules trapped inside a vesicle. Although highly abundant, Vps shows tremendous sequence variation among diverse array of species. However, this difference in sequence, which seems to also translate into substantial functional variation, is hardly characterized in Corchorus spp. Here, our computational study investigates structural and functional features of one of the Vps subunit namely Vps51/Vps67 in C. olitorius. Broad scale structural characterization revealed novel information about the overall Vps structure and binding sites. Moreover, functional analyses indicate interaction partners which were unexplored to date. Since membrane trafficking is essentially associated with nutrient uptake and chemical de-toxification, characterization of the Vps subunit can well provide us with better insight into important agronomic traits such as stress response, immune response and phytoremediation capacity.


Subject(s)
Amino Acid Sequence , Arabidopsis/chemistry , Corchorus/chemistry , Plant Proteins/chemistry , Protein Subunits/chemistry , Structural Homology, Protein , Vesicular Transport Proteins/chemistry , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Binding Sites , Biological Transport , Computational Biology/methods , Corchorus/metabolism , Plant Proteins/metabolism , Protein Structure, Tertiary , Protein Subunits/metabolism , Sequence Analysis/methods , Structure-Activity Relationship , Vesicular Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...