Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Chem Lett ; : 1-31, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37362015

ABSTRACT

The rising amount of waste generated worldwide is inducing issues of pollution, waste management, and recycling, calling for new strategies to improve the waste ecosystem, such as the use of artificial intelligence. Here, we review the application of artificial intelligence in waste-to-energy, smart bins, waste-sorting robots, waste generation models, waste monitoring and tracking, plastic pyrolysis, distinguishing fossil and modern materials, logistics, disposal, illegal dumping, resource recovery, smart cities, process efficiency, cost savings, and improving public health. Using artificial intelligence in waste logistics can reduce transportation distance by up to 36.8%, cost savings by up to 13.35%, and time savings by up to 28.22%. Artificial intelligence allows for identifying and sorting waste with an accuracy ranging from 72.8 to 99.95%. Artificial intelligence combined with chemical analysis improves waste pyrolysis, carbon emission estimation, and energy conversion. We also explain how efficiency can be increased and costs can be reduced by artificial intelligence in waste management systems for smart cities.

2.
J Clin Lab Anal ; 35(12): e24084, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34724252

ABSTRACT

BACKGROUND: Alveolar echinococcosis (AE) is a zoonotic disease caused by the larval stage of Echinococcus multilocularis parasitizing in the human liver, causing local pathological changes in the liver and manifesting as hyperplasia, liver fibrosis, atrophy, degeneration, and necrosis. Here, we report a method that can simultaneously isolate hepatocytes and hepatic stellate cells (HSCs) from mice infected with Echinococcus multilocularis. METHODS: A mouse model of AE was established. Hepatocytes and HSCs were isolated from mouse liver using a two-step method combining in situ collagenase perfusion and gradient centrifugation. Expressions of Alb, Desmin, and α-SMA were detected with immunofluorescence to identify the isolated hepatocytes and HSCs. RESULTS: The viability and purity of hepatocytes and HSCs both reached 90% or above. For hepatocytes, clear cell boundaries were observed, and the nuclei were round or oval, with clear nucleoli. There was a homogeneous distribution of the hepatocyte marker Alb in the cytoplasm of hepatocytes. Lipid droplets and Desmin expression were observed in the cytoplasm of freshly isolated HSCs. During the activation of HSCs, the lipid droplets gradually decreased and disappeared with a high expression of α-SMA. CONCLUSION: Hepatocytes and HSCs are simultaneously isolated. This may provide a research tool to investigate the interaction between hepatocytes and HSCs and to investigate the mechanism of Echinococcus multilocularis infection-induced liver pathological changes.


Subject(s)
Cell Separation/methods , Echinococcosis, Hepatic/pathology , Hepatic Stellate Cells , Hepatocytes , Liver/pathology , Actins/metabolism , Animals , Biomarkers/metabolism , Cell Culture Techniques , Cell Survival , Desmin/metabolism , Disease Models, Animal , Echinococcosis/pathology , Echinococcus multilocularis/pathogenicity , Female , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/parasitology , Hepatocytes/metabolism , Hepatocytes/parasitology , Liver/parasitology , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...