Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 23(12): 101848, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33319175

ABSTRACT

The emerging triboelectric nanogenerator (TENG) network shows great potential in harvesting the ocean wave energy, which can help to achieve large-scale clean wave power generation. However, due to the lack of an effective networking strategy and theoretical guidance, the practicability of the TENG network is heavily restricted. In this paper, based on the typical spherical TENG, we investigated the networking design of TENGs. Four fundamental forms of electrical networking topology are proposed for large-scale TENG networks, and the influences of cable resistance and output phase asynchrony of each unit to the network output were systematically investigated. The research results show that the forms of electrical networking topology can produce an important influence on the output power of large-scale TENG networks. This is the first strategy analysis for the TENG network, which provides a theoretical basis and a universal method for the optimization design of large-scale power networks.

2.
Microsyst Nanoeng ; 6: 61, 2020.
Article in English | MEDLINE | ID: mdl-34567672

ABSTRACT

Electrically modulated varifocal liquid lenses, which are usually modulated by an external high voltage power source, have attracted much attention due to their bright application prospects in artificial optical systems. Here, a triboelectric nanogenerator (TENG)-based varifocal liquid lens (TVLL) has been demonstrated, in which the focal length can be directly modulated by external mechanical sliding. A dielectrophoretic force is generated by the TENG through the transfer of triboelectric charges in the asymmetric electrodes, which is used to continuously change the shape of the air-liquid interface between concave and convex without any complicated boost converter. Moreover, a triboelectric magnifying glass based on the accurate modulation effect of the TVLL on a light beam has been demonstrated. In this work, the TENG is used as a medium to modulate and accurately control the focal length of the liquid lens by an external mechanical stimulus, which may have great applications in micro-optical-electro-mechanical systems (MOEMS), human-machine interaction, artificial vision systems, etc.

3.
Nanoscale ; 8(5): 2875-80, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-26771075

ABSTRACT

Three-dimensional (3D) noble metal nanoassemblies composed of one-dimensional (1D) nanowires have been attracting much interest due to the unique physical and chemical properties of 1D nanowires as well as the particular interconnected open-pore structure of 3D nanoassemblies. In this work, well-defined Au/Pt wire nanoassemblies were synthesized by using a facile NaBH4 reduction method in the presence of a branched form of polyethyleneimine (PEI). A study of the growth mechanism indicated the morphology of the final product to be highly related to the molecular structure of the polymeric amine. Also, the preferred Pt-on-Pt deposition contributed to the formation of the 1D Pt nanowires. The Au/Pt wire nanoassemblies were functionalized with PEI at the same time that these nanoassemblies were synthesized due to the strong N-Pt bond. The chemically functionalized Au/Pt wire nanoassemblies exhibited better electrocatalytic activity for the electro-oxidation of oxalic acid than did commercial Pt black.

4.
Med Biol Eng Comput ; 53(10): 943-50, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26002593

ABSTRACT

In this paper, a computer-aided system for orbital prosthesis rehabilitation is introduced. With the system, a 3D model of the orbital prosthesis can be easily reconstructed from the CT image of a patient by referring to the normal eye of the patient, and the rehabilitation result by the model can be simulated before the surgery. This facilitates surgeons to design appropriate orbital prosthesis and improve rehabilitation esthetics. Based on the system, the preoperative surgery planning for orbital implant can also be made. This improves the reliability, safety and intuition of the rehabilitation surgery well. The system has been applied to clinical CT images of patients, and the experimental results show effectiveness and acceptability of the system in the clinic.


Subject(s)
Imaging, Three-Dimensional/methods , Orbital Implants , Plastic Surgery Procedures/methods , Prosthesis Design/methods , Tomography, X-Ray Computed/methods , Computer-Aided Design , Humans , Orbit/diagnostic imaging , Orbit/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...