Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 14(3): 216, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36977674

ABSTRACT

Reactive oxygen species (ROS) can induce oxidative injury and are generally regarded as toxic byproducts, although they are increasingly recognized for their signaling functions. Increased ROS often accompanies liver regeneration (LR) after liver injuries, however, their role in LR and the underlying mechanism remains unclear. Here, by employing a mouse LR model of partial hepatectomy (PHx), we found that PHx induced rapid increases of mitochondrial hydrogen peroxide (H2O2) and intracellular H2O2 at an early stage, using a mitochondria-specific probe. Scavenging mitochondrial H2O2 in mice with liver-specific overexpression of mitochondria-targeted catalase (mCAT) decreased intracellular H2O2 and compromised LR, while NADPH oxidases (NOXs) inhibition did not affect intracellular H2O2 or LR, indicating that mitochondria-derived H2O2 played an essential role in LR after PHx. Furthermore, pharmacological activation of FoxO3a impaired the H2O2-triggered LR, while liver-specific knockdown of FoxO3a by CRISPR-Cas9 technology almost abolished the inhibition of LR by overexpression of mCAT, demonstrating that FoxO3a signaling pathway mediated mitochondria-derived H2O2 triggered LR after PHx. Our findings uncover the beneficial roles of mitochondrial H2O2 and the redox-regulated underlying mechanisms during LR, which shed light on potential therapeutic interventions for LR-related liver injury. Importantly, these findings also indicate that improper antioxidative intervention might impair LR and delay the recovery of LR-related diseases in clinics.


Subject(s)
Hepatectomy , Liver Regeneration , Animals , Mice , Disease Models, Animal , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
2.
Redox Biol ; 36: 101635, 2020 09.
Article in English | MEDLINE | ID: mdl-32863214

ABSTRACT

Exercise and dietary intervention are currently available strategies to treat nonalcoholic fatty liver disease (NAFLD), while the underlying mechanism remains controversial. Emerging evidence shows that lipophagy is involved in the inhibition of the lipid droplets accumulation. However, it is still unclear if exercise and dietary intervention improve NAFLD through regulating lipophagy, and how exercise of skeletal muscle can modulate lipid metabolism in liver. Moreover, NAFLD is associated with aging, and little is known about the effect of lipid accumulation on aging process. Here in vivo and in vitro models, we found that exercise and dietary intervention reduced lipid droplets formation, decreased hepatic triglyceride in the liver induced by high-fat diet. Exercise and dietary intervention enhanced the lipophagy by activating AMPK/ULK1 and inhibiting Akt/mTOR/ULK1 pathways respectively. Furthermore, exercise stimulated FGF21 production in the muscle, followed by secretion to the circulation to promote the lipophagy in the liver via an AMPK-dependent pathway. Importantly, for the first time, we demonstrated that lipid accumulation exacerbated liver aging, which was ameliorated by exercise and dietary intervention through inducing lipophagy. Our findings suggested a new mechanism of exercise and dietary intervention to improve NAFLD through promoting lipophagy. The study also provided evidence to support that muscle exercise is beneficial to other metabolic organs such as liver. The FGF21-mediated AMPK dependent lipophagy might be a potential drug target for NAFLD and aging caused by lipid metabolic dysfunction.


Subject(s)
Non-alcoholic Fatty Liver Disease , Aging , Autophagy , Diet, High-Fat/adverse effects , Humans , Lipid Metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...