Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 226(12): 2142-2149, 2022 12 13.
Article in English | MEDLINE | ID: mdl-35771664

ABSTRACT

BACKGROUND: Monitoring the emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is an important public health objective. We investigated how the Gamma variant was established in New York City (NYC) in early 2021 in the presence of travel restrictions that aimed to prevent viral spread from Brazil, the country where the variant was first identified. METHODS: We performed phylogeographic analysis on 15 967 Gamma sequences sampled between 10 March and 1 May 2021, to identify geographic sources of Gamma lineages introduced into NYC. We identified locally circulating Gamma transmission clusters and inferred the timing of their establishment in NYC. RESULTS: We identified 16 phylogenetically distinct Gamma clusters established in NYC (cluster sizes ranged 2-108 genomes); most of them were introduced from Florida and Illinois and only 1 directly from Brazil. By the time the first Gamma case was reported by genomic surveillance in NYC on 10 March, the majority (57%) of circulating Gamma lineages had already been established in the city for at least 2 weeks. CONCLUSIONS: Although travel from Brazil to the United States was restricted from May 2020 through the end of the study period, this restriction did not prevent Gamma from becoming established in NYC as most introductions occurred from domestic locations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , New York City/epidemiology , COVID-19/epidemiology , Phylogeny
2.
Nat Commun ; 12(1): 4886, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34373458

ABSTRACT

Wide-scale SARS-CoV-2 genome sequencing is critical to tracking viral evolution during the ongoing pandemic. We develop the software tool, Variant Database (VDB), for quickly examining the changing landscape of spike mutations. Using VDB, we detect an emerging lineage of SARS-CoV-2 in the New York region that shares mutations with previously reported variants. The most common sets of spike mutations in this lineage (now designated as B.1.526) are L5F, T95I, D253G, E484K or S477N, D614G, and A701V. This lineage was first sequenced in late November 2020. Phylodynamic inference confirmed the rapid growth of the B.1.526 lineage. In concert with other variants, like B.1.1.7, the rise of B.1.526 appears to have extended the duration of the second wave of COVID-19 cases in NYC in early 2021. Pseudovirus neutralization experiments demonstrated that B.1.526 spike mutations adversely affect the neutralization titer of convalescent and vaccinee plasma, supporting the public health relevance of this lineage.


Subject(s)
COVID-19/virology , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , Genome, Viral , Humans , Models, Molecular , Mutation , New York/epidemiology , Phylogeny , SARS-CoV-2/genetics , Software , Spike Glycoprotein, Coronavirus/genetics
3.
bioRxiv ; 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33907745

ABSTRACT

Wide-scale SARS-CoV-2 genome sequencing is critical to tracking viral evolution during the ongoing pandemic. Variants first detected in the United Kingdom, South Africa, and Brazil have spread to multiple countries. We developed the software tool, Variant Database (VDB), for quickly examining the changing landscape of spike mutations. Using VDB, we detected an emerging lineage of SARS-CoV-2 in the New York region that shares mutations with previously reported variants. The most common sets of spike mutations in this lineage (now designated as B.1.526) are L5F, T95I, D253G, E484K or S477N, D614G, and A701V. This lineage was first sequenced in late November 2020 when it represented <1% of sequenced coronavirus genomes that were collected in New York City (NYC). By February 2021, genomes from this lineage accounted for ~32% of 3288 sequenced genomes from NYC specimens. Phylodynamic inference confirmed the rapid growth of the B.1.526 lineage in NYC, notably the sub-clade defined by the spike mutation E484K, which has outpaced the growth of other variants in NYC. Pseudovirus neutralization experiments demonstrated that B.1.526 spike mutations adversely affect the neutralization titer of convalescent and vaccinee plasma, indicating the public health importance of this lineage.

SELECTION OF CITATIONS
SEARCH DETAIL
...