Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 536
Filter
1.
BMC Ecol Evol ; 24(1): 75, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844857

ABSTRACT

BACKGROUND: The parallel evolution of similar traits or species provides strong evidence for the role of natural selection in evolution. Traits or species that evolved repeatedly can be driven by separate de novo mutations or interspecific gene flow. Although parallel evolution has been reported in many studies, documented cases of parallel evolution caused by gene flow are scarce by comparison. Aquilegia ecalcarata and A. kansuensis belong to the genus of Aquilegia, and are the closest related sister species. Mutiple origins of A. ecalcarata have been reported in previous studies, but whether they have been driven by separate de novo mutations or gene flow remains unclear. RESULTS: In this study, We conducted genomic analysis from 158 individuals of two repeatedly evolving pairs of A. ecalcarata and A. kansuensis. All samples were divided into two distinct clades with obvious geographical distribution based on phylogeny and population structure. Demographic modeling revealed that the origin of the A. ecalcarata in the Eastern of China was caused by gene flow, and the Eastern A. ecalcarata occurred following introgression from Western A. ecalcarata population. Analysis of Treemix and D-statistic also revealed that a strong signal of gene flow was detected from Western A. ecalcarata to Eastern A. ecalcarata. Genetic divergence and selective sweep analyses inferred parallel regions of genomic divergence and identified many candidate genes associated with ecologically adaptive divergence between species pair. Comparative analysis of parallel diverged regions and gene introgression confirms that gene flow contributed to the parallel evolution of A. ecalcarata. CONCLUSIONS: Our results further confirmed the multiple origins of A. ecalcarata and highlighted the roles of gene flow. These findings provide new evidence for parallel origin after hybridization as well as insights into the ecological adaptation mechanisms underlying the parallel origins of species.


Subject(s)
Aquilegia , Gene Flow , Aquilegia/genetics , Genomics , China , Phylogeny , Hybridization, Genetic
2.
Acta Pharm Sin B ; 14(6): 2613-2630, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828140

ABSTRACT

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) protect against diabetic cardiovascular diseases and nephropathy. However, their activity in diabetic retinopathy (DR) remains unclear. Our retrospective cohort study involving 1626 T2DM patients revealed superior efficacy of GLP-1 RAs in controlling DR compared to other glucose-lowering medications, suggesting their advantage in DR treatment. By single-cell RNA-sequencing analysis and immunostaining, we observed a high expression of GLP-1R in retinal endothelial cells, which was down-regulated under diabetic conditions. Treatment of GLP-1 RAs significantly restored the receptor expression, resulting in an improvement in retinal degeneration, vascular tortuosity, avascular vessels, and vascular integrity in diabetic mice. GO and GSEA analyses further implicated enhanced mitochondrial gene translation and mitochondrial functions by GLP-1 RAs. Additionally, the treatment attenuated STING signaling activation in retinal endothelial cells, which is typically activated by leaked mitochondrial DNA. Expression of STING mRNA was positively correlated to the levels of angiogenic and inflammatory factors in the endothelial cells of human fibrovascular membranes. Further investigation revealed that the cAMP-responsive element binding protein played a role in the GLP-1R signaling pathway on suppression of STING signaling. This study demonstrates a novel role of GLP-1 RAs in the protection of diabetic retinal vasculature by inhibiting STING-elicited inflammatory signals.

3.
Dalton Trans ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819201

ABSTRACT

Owing to the occupying tendency of Mn4+ at octahedral sites, doping Mn4+ activators in tetrahedral structures poses challenges and hence is seldom reported. In this work, tetrahedrally sited Mn4+ phosphors were studied. By combining X-ray diffraction (XRD) data with Rietveld refinement analysis, the location of Mn4+ was determined. It was found that by adding excessive raw MgO, the phosphor synthesis temperature can be improved, enhancing the crystallinity of the crystal and thus improving the emission performance of the phosphor. In addition, excessive raw MgO forms a second phase in an LMGO matrix, which does not change the doping site for Mn4+. The Tanabe-Sugano diagram of Mn4+ in the tetrahedral field and the energy-level diagram of these phosphors were constructed for the first time, and the excitation and emission mechanisms are discussed in detail. With 1.2-fold excess of raw MgO, the prepared sample (LMGO-Mn-1.2) shows the best luminescence, demonstrating red emissions peaked at 656 nm and affording an emission intensity enhancement of over 50 times compared to a stoichiometric LMGO:Mn4+ system. At 150 °C, LMGO-Mn-1.2 keeps 90% emission intensity compared to that at room temperature. Finally, a high-efficiency warm white light-emitting diode was built. This work provides new insights into the study of Mn4+-activated phosphors in a tetrahedron crystal field.

4.
Inorg Chem ; 63(18): 8171-8179, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38655575

ABSTRACT

Although 1,10-phenanthroline has been proven to hold a strong complexing capacity for f-block elements and their derivatives have been applied in many fields, research on more highly or completely rigid phenanthroline ligands is still rare due to the challenging syntheses. Here, we reported three tetradentate ligands 2,9-di(pyridin-2-yl)-1,10-phenanthroline (L1), 12-(pyridin-2-yl)-5,6-dihydroquinolino[8,7b][1,10]phenanthroline (L2), and 5,6,11,12-tetrahydrobenzo[2,1-b:3,4-b']bis([1,10]phenanthroline) (L3) with increasing preorganization on the side chain; among which, L3 is fully preorganized. Their complexation reactions with Eu(III) were systematically investigated by electrospray ionization mass spectrometry (ESI-MS), UV-vis titrations, and single-crystal structures. It is found that all three ligands form only 1:1 M/L complexes with Eu(III). The single-crystal structures revealed that the three ligands hold similar coordination modes, while their stability constants determined by UV-vis titrations were L3 (4.80 ± 0.01) > L2 (4.38 ± 0.01) > L1 (3.88 ± 0.01). This trend is supported not only by the thermodynamic stability of rigid ligands compared to free ligands but also by the conclusion that rigid ligands exhibit faster reaction rates (lower energy barrier) than free ligands kinetically. This work is helpful in providing theoretical guidance for the subsequent development of highly preorganized chelating ligands with strong coordination ability and high selectivity for f-block elements.

5.
Chem Commun (Camb) ; 60(38): 5042-5045, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38634237

ABSTRACT

Epimers of the (1,10-phenanthroline-2,9-diyl)bis(ethyl(phenyl)phosphine oxide) (Et-Ph-BPPhen) ligand with two chiral centers (R,R/S,S and R,S) were synthesized. The configurational effects on the coordination ability and mechanism between these epimeric ligands and uranyl ions were thoroughly investigated. This work is helpful to reveal the effects of different conformations of epimeric ligands on their coordination properties.

6.
Hepatology ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557414

ABSTRACT

BACKGROUND AND AIMS: Epigenetic reprogramming and escape from terminal differentiation are poorly understood enabling characteristics of liver cancer. Keratin 19 (KRT19), classically known to form the intermediate filament cytoskeleton, is a marker of stemness and worse prognosis in liver cancer. This study aimed to address the functional roles of KRT19 in liver tumorigenesis and to elucidate the underlying mechanisms. APPROACH AND RESULTS: Using multiplexed genome editing of hepatocytes in vivo, we demonstrated that KRT19 promoted liver tumorigenesis in mice. Cell fractionation revealed a previously unrecognized nuclear fraction of KRT19. Tandem affinity purification identified histone deacetylase 1 and REST corepressor 1, components of the corepressor of RE-1 silencing transcription factor (CoREST) complex as KRT19-interacting proteins. KRT19 knockout markedly enhanced histone acetylation levels. Mechanistically, KRT19 promotes CoREST complex formation by enhancing histone deacetylase 1 and REST corepressor 1 interaction, thus increasing the deacetylase activity. ChIP-seq revealed hepatocyte-specific genes, such as hepatocyte nuclear factor 4 alpha ( HNF4A ), as direct targets of KRT19-CoREST. In addition, we identified forkhead box P4 as a direct activator of aberrant KRT19 expression in liver cancer. Furthermore, treatment of primary liver tumors and patient-derived xenografts in mice suggest that KRT19 expression has the potential to predict response to histone deacetylase 1 inhibitors especially in combination with lenvatinib. CONCLUSIONS: Our data show that nuclear KRT19 acts as a transcriptional corepressor through promoting the deacetylase activity of the CoREST complex, resulting in dedifferentiation of liver cancer. These findings reveal a previously unrecognized function of KRT19 in directly shaping the epigenetic landscape in cancer.

7.
Am J Ophthalmol ; 265: 61-72, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38555010

ABSTRACT

PURPOSE: To assess the cone photoreceptors' morphology and associated retinal sensitivity in laser-induced retinopathy (LIR) using adaptive optics scanning laser ophthalmoscopy (AO-SLO) and microperimetry (MP). DESIGN: Cohort study. METHODS: This study included 13 patients (15 eyes) with LIR and 38 age-matched healthy volunteers (38 eyes). Participants underwent comprehensive evaluations including AO-SLO, MP, and spectral-domain OCT. Lesion morphology, cone density, dispersion, and regularity in AO-SLO were assessed and correlated with visual function. RESULTS: In AO-SLO images, LIR lesions were predominantly characterized by hyporeflective regions, suggesting potential cone loss at the fovea, accompanied by the presence of sizable clumps of hyperreflective material within these lesions. The average size of lesions in affected eyes was 97,128±107,478 µm², ranging from 6705 to 673,348 µm². Compared with the healthy contralateral eye and control group, LIR demonstrated significantly reduced cone density, increased cone dispersion, and notably decreased cone regularity in all 4 quadrants at 3° eccentricity (all P values < .05). Lesion morphology in AO-SLO correlated with ellipsoid zone defects observed in OCT, showing a positive correlation in size (r = 0.84, P < .001) but not with retinal sensitivities (P = .09). Similarly, cone density at 3° eccentricity did not correlate with retinal sensitivities (P = .13). CONCLUSIONS AND RELEVANCE: The study provides crucial insights into the morphologic and functional impacts of LIR on cone photoreceptors, revealing significant morphologic changes in cones that do not consistently align with functional outcomes. This research highlights the need for continued exploration into the relationship between retinal structure and function in LIR, and the importance of heightened public awareness and preventive strategies to mitigate the risk of LIR.

8.
Nucleic Acids Res ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499486

ABSTRACT

Complex organisms generate differential gene expression through the same set of DNA sequences in distinct cells. The communication between chromatin and RNA regulates cellular behavior in tissues. However, little is known about how chromatin, especially histone modifications, regulates RNA polyadenylation. In this study, we found that FUS was recruited to chromatin by H3K36me3 at gene bodies. The H3K36me3 recognition of FUS was mediated by the proline residues in the ZNF domain. After these proline residues were mutated or H3K36me3 was abolished, FUS dissociated from chromatin and bound more to RNA, resulting in an increase in polyadenylation sites far from stop codons genome-wide. A proline mutation corresponding to a mutation in amyotrophic lateral sclerosis contributed to the hyperactivation of mitochondria and hyperdifferentiation in mouse embryonic stem cells. These findings reveal that FUS is an H3K36me3 reader protein that links chromatin-mediated alternative polyadenylation to human disease.

9.
Materials (Basel) ; 17(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38473602

ABSTRACT

External prestressing is widely employed in structural strengthening engineering due to its numerous advantages. However, external prestressed steel bars are prone to corrosion when exposed to the service environment. This paper is dedicated to examining the use of fiber-reinforced polymer (FRP) bars as external prestressing materials to strengthen one-way concrete slabs. Five one-way concrete slabs were strengthened with externally prestressed FRP bars with different prestress levels and different amounts of FRP bars, while one non-strengthened slab was used for comparison. The effects of strengthening on the flexural behavior, specifically the cracking load, ultimate load, stiffness and failure mode, were analyzed systematically. Moreover, the ductility and cost-benefit optimizing properties of the reinforcing design were discussed. The results show that external prestressed FRP bars significantly improve the cracking load, ultimate load and stiffness of one-way concrete slabs. The absence of a bond between the concrete and FRP bars overcomes the brittleness of the FRP bars, while the strengthened slabs exhibit satisfactory ductility and a higher post-yield stiffness and bearing capacity. Additionally, the cost/benefit ratio is optimized by increasing the prestress level, while a higher number of prestressed FRP bars is beneficial to ductility. Finally, a method for calculating the stress in prestressed FRP bars at ultimate loads was proposed. Irrespective of the prestressing material, this method is applicable to both strengthened beams and one-way slabs.

10.
Chem Sci ; 15(8): 2867-2882, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38404376

ABSTRACT

The regulation of enzymes and development of polyamine analogs capable of controlling the dynamics of endogenous polyamines to achieve anti-tumor effects is one of the biggest challenges in polyamine research. However, the root of the problem remains unsolved. This study represents a significant milestone as it unveils, for the first time, the comprehensive catalytic map of acetylpolyamine oxidase that includes chemical transformation and product release kinetics, by utilizing multiscale simulations with over six million dynamical snapshots. The transportation of acetylspermine is strongly exothermic, and high binding affinity of enzyme and reactant is observed. The transfer of hydride from polyamine to FAD is the rate-limiting step, via an H-shift coupled electron transfer mechanism. The two products are released in a detour stepwise mechanism, which also impacts the enzymatic efficiency. Inspired by these mechanistic insights into enzymatic catalysis, we propose a novel strategy that regulates the polyamine level and catalytic progress through the action of His64. Directly suppressing APAO by mutating His64 further inhibited growth and migration of tumor cells and tumor tissue in vitro and in vivo. Therefore, the network connecting microcosmic and macroscopic scales opens up new avenues for designing polyamine compounds and conducting anti-tumor research in the future.

11.
Zygote ; 32(2): 119-129, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38248909

ABSTRACT

Zygotic genome activation (ZGA) is a critical event in early embryonic development, and thousands of genes are involved in this delicate and sophisticated biological process. To date, however, only a handful of these genes have revealed their core functions in this special process, and therefore the roles of other genes still remain unclear. In the present study, we used previously published transcriptome profiling to identify potential key genes (candidate genes) in minor ZGA and major ZGA in both human and mouse specimens, and further identified the conserved genes across species. Our results showed that 887 and 760 genes, respectively, were thought to be specific to human and mouse in major ZGA, and the other 135 genes were considered to be orthologous genes. Moreover, the conserved genes were most enriched in rRNA processing in the nucleus and cytosol, ribonucleoprotein complex biogenesis, ribonucleoprotein complex assembly and ribosome large subunit biogenesis. The findings of this first comprehensive identification and characterization of candidate genes in minor and major ZGA provide relevant insights for future studies on ZGA.


Subject(s)
Genome , Zygote , Animals , Zygote/metabolism , Mice , Humans , Genome/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Transcriptome/genetics , Female , Embryonic Development/genetics , Mammals/genetics
12.
Chemistry ; 30(16): e202304372, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38191767

ABSTRACT

Incorporating heteroatoms can effectively modulate the molecular optoelectronic properties. However, the fundamental understanding of BN doping effects in BN-embedded polycyclic aromatic hydrocarbons (PAHs) is underexplored, lacking rational guidelines to modulate the electronic structures through BN units for advanced materials. Herein, a concise synthesis of novel B2N2-perylenes with BN doped at the bay area is achieved to systematically explore the doping effect of BN position on the photophysical properties of PAHs. The shift of BN position in B2N2-perylenes alters the π electron conjugation, aromaticity and molecular rigidness significantly, achieving substantially higher electron transition abilities than those with BN doped in the nodal plane. It is further clarified that BN position dominates the photophysical properties over BN orientation. The revealed guideline here may apply generally to novel BN-PAHs, and aid the advancement of BN-PAHs with highly-emissive performance.

13.
Small ; 20(16): e2306010, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37884476

ABSTRACT

Realizing ideal charge transport in field-effect transistors (FETs) of conjugated polymers is crucial for evaluating device performance, such as carrier mobility and practical applications of conjugated polymers. However, the current FETs using conjugated polymers as the active layers generally show certain non-ideal transport characteristics and poor stability. Here, ideal charge transport of n-type polymer FETs is achieved on flexible polyimide substrates by using an organic-inorganic hybrid double-layer dielectric. Deposited conjugated polymer films show highly ordered structures and low disorder, which are supported by grazing-incidence wide-angle X-ray scattering, near-edge X-ray absorption fine structure, and molecular dynamics simulations. Furthermore, the organic-inorganic hybrid double-layer dielectric provides low interfacial defects, leading to excellent charge transport in FETs with high electron mobility (1.49 ± 0.46 cm2 V-1 s-1) and ideal reliability factors (102 ± 7%). Fabricated polymer FETs show a self-encapsulation effect, resulting in high stability of the FET charge transport. The polymer FETs still work with high mobility above 1 cm2 V-1 s-1 after storage in air for more than 300 days. Compared with state-of-the-art conjugated polymer FETs, this work simultaneously achieves ideal charge transport and environmental stability in n-type polymer FETs, facilitating rapid device optimization of high-performance polymer electronics.

14.
Graefes Arch Clin Exp Ophthalmol ; 262(4): 1121-1129, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37999773

ABSTRACT

PURPOSE: To explore the role of choroidopathy in diabetic retinopathy (DR) by investigating the correlation between alterations of choroidal vessel and photoreceptors during the early stage of DR. METHODS: We performed a cross-sectional comparison of diabetic patients without DR (NDR group; n=16) and those with mild nonproliferative diabetic retinopathy (NPDR group; n=39). Optical coherence tomography (OCT) images of choroidal vessel alterations and photoreceptor structures were evaluated using the choroidal vascularity index (CVI) and adjusted ellipsoid zone (EZ) reflectivity, respectively. To evaluate the function of cone photoreceptors, the fundamental, harmonic amplitudes, the parameters S and Rmp3 were calculated from the electroretinogram (ERG). These factors were compared between groups. The correlation between the CVI and parameters describing the function and structure of the photoreceptors was evaluated. RESULTS: The significant decrease was observed in the CVI in the NPDR group compared to the NDR group (0.67 ± 0.04 vs. 0.70 ± 0.06; p = 0.028), but not in the adjusted EZ reflectivity or ERG parameters. In NPDR group and merging the 2 groups, CVI was moderately positively correlated with the fundamental amplitude obtained by the flicker ERG (NPDR only: r = 0.506; p = 0.001; merge the 2 groups: r = 0.423; p = 0.001), which was regulated by the response of the cone photoreceptors. The CVI was positively and moderately correlated with the logS (NPDR only: r = 0.462; p = 0.003; merge the 2 groups: r = 0.355; p = 0.008), indicating the sensitivity of cone cell light transduction. CONCLUSION: Compared to eyes without DR, CVI decreased representing choroidal vascular changes in eyes with mild NPDR. These changes may be related to the functional impairment of cone photoreceptors, especially phototransduction sensitivity, as the DR develops.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/diagnosis , Cross-Sectional Studies , Retinal Cone Photoreceptor Cells/physiology , Electroretinography/methods , Tomography, Optical Coherence/methods
15.
J Chem Theory Comput ; 20(2): 799-818, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38157475

ABSTRACT

Biomolecular simulations have become an essential tool in contemporary drug discovery, and molecular mechanics force fields (FFs) constitute its cornerstone. Developing a high quality and broad coverage general FF is a significant undertaking that requires substantial expert knowledge and computing resources, which is beyond the scope of general practitioners. Existing FFs originate from only a limited number of groups and organizations, and they either suffer from limited numbers of training sets, lower than desired quality because of oversimplified representations, or are costly for the molecular modeling community to access. To address these issues, in this work, we developed an AMBER-consistent small molecule FF with extensive chemical space coverage, and we provide Open Access parameters for the entire modeling community. To validate our FF, we carried out benchmarks of quantum mechanics (QM)/molecular mechanics conformer comparison and free energy perturbation calculations on several benchmark data sets. Our FF achieves a higher level of performance at reproducing QM energies and geometries than two popular open-source FFs, OpenFF2 and GAFF2. In relative binding free energy calculations for 31 protein-ligand data sets, comprising 1079 pairs of ligands, the new FF achieves an overall root-mean-square error of 1.19 kcal/mol for ΔΔG and 0.92 kcal/mol for ΔG on a subset of 463 ligands without bespoke fitting to the data sets. The results are on par with those of the leading commercial series of OPLS FFs.


Subject(s)
Benchmarking , Molecular Dynamics Simulation , Thermodynamics , Entropy , Proteins/chemistry , Ligands
16.
Biol Direct ; 18(1): 72, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37924160

ABSTRACT

BACKGROUND: Malignant melanoma is a highly heterogeneous skin cancer with the highest mortality rate among dermatological cancers. Catenins form functional networks in the nucleus to regulate gene expression and determine cell fate. Dysregulation of catenin expression correlates with the malignant characteristics of the tumor. We aimed to investigate the regulatory mechanisms of catenins in melanoma and to further define the function of catenin-related molecular signaling in the tumor microenvironment. METHODS: In this study, a bioinformatics approach combined with experimental validation was used to explore the potential tumor biology mechanisms of catenin-related signaling. RESULTS: Melanoma patients can be divided into two catenin clusters. Patients defined by high Junction Plakoglobin (JUP), Plakophilin 1 (PKP1), Plakophilin 3 (PKP3) levels (C2) had shorter survival time than other patients (C1). We demonstrated that JUP regulates Anterior Gradient 2 (AGR2)/LY6/PLAUR Domain Containing 3 (LYPD3) to maintain melanoma stemness and promotes glycolysis. We also found that LYPD3 was co-expressed with S100A9 and associated with immunosuppressive tumor microenvironment (TME). CONCLUSION: The JUP/AGR2/LYPD3 signaling axis plays an important role in the malignant features of melanoma. Targeting the JUP/AGR2/LYPD3 signaling axis can help develop promising drugs.


Subject(s)
Cell Adhesion Molecules , GPI-Linked Proteins , Melanoma , Skin Neoplasms , Humans , Catenins/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mucoproteins , Oncogene Proteins/metabolism , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tumor Microenvironment
17.
bioRxiv ; 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37873347

ABSTRACT

Histone H3.3 is frequently mutated in cancers, with the lysine 36 to methionine mutation (K36M) being a hallmark of chondroblastomas. While it is known that H3.3K36M changes the cellular epigenetic landscape, it remains unclear how it affects the dynamics of gene expression. Here, we use a synthetic reporter to measure the effect of H3.3K36M on silencing and epigenetic memory after recruitment of KRAB: a member of the largest class of human repressors, commonly used in synthetic biology, and associated with H3K9me3. We find that H3.3K36M, which decreases H3K36 methylation, leads to a decrease in epigenetic memory and promoter methylation weeks after KRAB release. We propose a new model for establishment and maintenance of epigenetic memory, where H3K36 methylation is necessary to convert H3K9me3 domains into DNA methylation for stable epigenetic memory. Our quantitative model can inform oncogenic mechanisms and guide development of epigenetic editing tools.

18.
FASEB J ; 37(11): e23250, 2023 11.
Article in English | MEDLINE | ID: mdl-37819682

ABSTRACT

Vision loss and blindness are frequently caused by photoreceptor degeneration, for example in age-related macular degeneration and retinitis pigmentosa. However, there is no effective medicine to treat these photoreceptor degeneration-related diseases. Cell senescence is a common phenotype in many diseases; however, few studies have reported whether it occurs in photoreceptor degeneration diseases. Herein, we identified that cell senescence is associated with photoreceptor degeneration induced by N-methyl-N-nitrosourea (MNU, a commonly used photoreceptor degeneration model), presented as increased senescence-associated ß-galactosidase activity, DNA damage, oxidative stress and inflammation-related cytokine Interleukin 6 (IL6), and upregulation of cyclin p21 or p16. These results suggested that visual function might be protected using anti-aging treatment. Furthermore, Hyperoside is reported to help prevent aging in various organs. In this study, we showed that Hyperoside, delivered intravitreally, alleviated photoreceptor cell senescence and ameliorated the functional and morphological degeneration of the retina in vivo and in vitro. Importantly, Hyperoside attenuated the MNU-induced injury and aging of photoreceptors via AMPK-ULK1 signaling inhibition. Taken together, our results demonstrated that Hyperoside can prevent MNU-induced photoreceptor degeneration by inhibiting cell senescence via the AMPK-ULK1 pathway.


Subject(s)
AMP-Activated Protein Kinases , Retinal Degeneration , Animals , AMP-Activated Protein Kinases/metabolism , Apoptosis , Cellular Senescence , Disease Models, Animal , Methylnitrosourea/toxicity , Photoreceptor Cells, Vertebrate/metabolism , Retina/metabolism , Retinal Degeneration/chemically induced , Retinal Degeneration/drug therapy , Retinal Degeneration/prevention & control
19.
Front Neurosci ; 17: 1259622, 2023.
Article in English | MEDLINE | ID: mdl-37811327

ABSTRACT

Introduction: Photoreceptor degenerative diseases are characterized by the progressive death of photoreceptor cells, resulting in irreversible visual impairment. However, the role of competing endogenous RNA (ceRNA) in photoreceptor degeneration is unclear. We aimed to explore the shared ceRNA regulation network and potential molecular mechanisms between primary and secondary photoreceptor degenerations. Methods: We established animal models for both types of photoreceptor degenerations and conducted retina RNA sequencing to identify shared differentially expressed long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs). Using ceRNA regulatory principles, we constructed a shared ceRNA network and performed function enrichment and protein-protein interaction (PPI) analyses to identify hub genes and key pathways. Immune cell infiltration and drug-gene interaction analyses were conducted, and hub gene expression was validated by quantitative real-time polymerase chain reaction (qRT-PCR). Results: We identified 37 shared differentially expressed lncRNAs, 34 miRNAs, and 247 mRNAs and constructed a ceRNA network consisting of 3 lncRNAs, 5 miRNAs, and 109 mRNAs. Furthermore, we examined 109 common differentially expressed genes (DEGs) through functional annotation, PPI analysis, and regulatory network analysis. We discovered that these diseases shared the complement and coagulation cascades pathway. Eight hub genes were identified and enriched in the immune system process. Immune infiltration analysis revealed increased T cells and decreased B cells in both photoreceptor degenerations. The expression of hub genes was closely associated with the quantities of immune cell types. Additionally, we identified 7 immune therapeutical drugs that target the hub genes. Discussion: Our findings provide new insights and directions for understanding the common mechanisms underlying the development of photoreceptor degeneration. The hub genes and related ceRNA networks we identified may offer new perspectives for elucidating the mechanisms and hold promise for the development of innovative treatment strategies.

20.
Urol Oncol ; 41(11): 460.e1-460.e9, 2023 11.
Article in English | MEDLINE | ID: mdl-37709565

ABSTRACT

PURPOSE: Racially driven outcomes in cancer are challenging to study. Studies evaluating the impact of race in renal cell carcinoma (RCC) outcomes are inconsistent and unable to disentangle socioeconomic disparities from inherent biological differences. We therefore seek to investigate socioeconomic determinants of racial disparities with respect to overall survival (OS) when comparing Black and White patients with RCC. METHODS: We queried the National Cancer Database (NCDB) for patients diagnosed with RCC between 2004 and 2017 with complete clinicodemographic data. Patients were examined across various stages (all, cT1aN0M0, and cM1) and subtypes (all, clear cell, or papillary). We performed Cox proportional hazards regression with adjustment for socioeconomic and disease factors. RESULTS: There were 386,589 patients with RCC, of whom 46,507 (12.0%) were Black. Black patients were generally younger, had more comorbid conditions, less likely to be insured, in a lower income quartile, had lower rates of high school completion, were more likely to have papillary RCC histology, and more likely to be diagnosed at a lower stage of RCC than their white counterparts. By stage, Black patients demonstrated a 16% (any stage), 22.5% (small renal mass [SRM]), and 15% (metastatic) higher risk of mortality than White patients. Survival differences were also evident in histology-specific subanalyses. Socioeconomic factors played a larger role in predicting OS among patients with SRMs than in patients with metastasis. CONCLUSIONS: Black patients with RCC demonstrate worse survival outcomes compared to White patients across all stages. Socioeconomic disparities between races play a significant role in influencing survival in RCC.


Subject(s)
Carcinoma, Renal Cell , Health Inequities , Kidney Neoplasms , Social Determinants of Health , Humans , Black People , Carcinoma, Renal Cell/epidemiology , Carcinoma, Renal Cell/ethnology , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/epidemiology , Kidney Neoplasms/ethnology , Kidney Neoplasms/mortality , Kidney Neoplasms/pathology , Socioeconomic Factors , White People , Social Determinants of Health/ethnology , Social Determinants of Health/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...