Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Biomed Pharmacother ; 175: 116605, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688168

ABSTRACT

The recent Global Burden of Disease results have demonstrated that oral diseases are some of the most significant public health challenges facing the world. Owing to its specific localization advantage, superoxide dismutase 2 (SOD2 or MnSOD) has the ability to process the reactive oxygen species (ROS) produced by mitochondrial respiration before anything else, thereby impacting the occurrence and development of diseases. In this review, we summarize the processes of common oral diseases in which SOD2 is involved. SOD2 is upregulated in periodontitis to protect the tissue from the distant damage caused by excessive ROS and further reduce inflammatory progression. SOD2 also participates in the specific pathogenesis of oral cancers and dental diseases. The clinical application prospects of SOD2 in oral diseases will be discussed further, referencing the differences and relationship between oral diseases and other clinical systemic diseases.


Subject(s)
Disease Progression , Reactive Oxygen Species , Superoxide Dismutase , Humans , Superoxide Dismutase/metabolism , Reactive Oxygen Species/metabolism , Animals , Mouth Diseases/pathology , Mouth Diseases/enzymology , Oxidative Stress , Mitochondria/metabolism
2.
J Periodontol ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37921754

ABSTRACT

BACKGROUND: Osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is an essential event in alveolar bone regeneration. Oxidative stress may be the main inhibiting factor of hPDLSC osteogenesis. Superoxide dismutase 2 (SOD2) is a key antioxidant enzyme, but its effect on hPDLSC osteogenic differentiation is unclear. METHODS: Several surface markers were detected by flow cytometry, and the differentiation potential of hPDLSCs was validated by alkaline phosphatase (ALP), Alizarin Red S, and Oil Red O staining. Osteogenic indicators of hPDLSCs were detected by real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, and ALP staining. Furthermore, alveolar bone defect rat models were analyzed through micro-CT, hematoxylin and eosin, and Masson staining. The intracellular reactive oxygen species (ROS) level was evaluated by a ROS assay kit. Finally, the expression of SOD2, Smad3, and p-Smad3 in hPDLSCs was detected by RT-qPCR and Western blotting (WB). RESULTS: SOD2 positively regulated the gene and protein expressions of ALP, BMP6, and RUNX2 in hPDLSCs (p < 0.05). Ideal bone formation and continuous cortical bone were obtained by transplanting LV-SOD2 hPDLSCs (lentivirus vector for overexpressing SOD2 in hPDLSCs) in vivo. Exogenous H2 O2 downregulated osteogenic indicators (ALP, BMP6, RUNX2) in hPDLSCs (p < 0.05); this was reversed by overexpression of SOD2. WB results showed that the Smad3 and p-Smad3 signaling pathways participated in the osteogenic process of SOD2 in hPDLSCs. CONCLUSION: SOD2 positively regulated hPDLSC osteogenic differentiation in vitro and in vivo. Mechanistically, SOD2 promotes hPDLSC osteogenic differentiation by regulating the phosphorylation of Smad3 to scavenge ROS. This work provides a theoretical basis for the treatment of alveolar bone regeneration.

3.
Front Immunol ; 14: 1198053, 2023.
Article in English | MEDLINE | ID: mdl-37275855

ABSTRACT

Background: The role of ferroptosis in irreversible pulpitis (IP) remains unclear. The competing endogenous RNA (ceRNA) theory that has been widely investigated is rarely used studied in IP. Hub lncRNAs selected from a ceRNA network may provide a novel hypothesis for the interaction of ferroptosis and IP. Methods: Differentially expressed genes (DEGs) were intersected with 484 ferroptosis markers to identify differentially expressed ferroptosis-related genes (DE-FRGs). Functional analysis and protein-protein interaction (PPI) networks were constructed to reveal the functions of DE-FRGs. Then, coexpression analyses were conducted between DE-FRGs and DElncRNAs to define ferroptosis-related DElncRNAs (FR-DElncRNAs). Predictions of DE-FRG- and FR-DElncRNA-related miRNAs were obtained, and members of both groups were selected. Additionally, two ceRNA networks consisting of FR-DElncRNAs, miRNAs and DE-FRGs from upregulated and downregulated groups were built. Finally, the hub lncRNAs of the ceRNA networks were used for immuno-infiltration analysis and qPCR verification. Results: According to the results of PCA and clustering analysis, 5 inflamed and 5 healthy pulp tissue samples were selected for analysis. The intersection of DEGs with 484 ferroptosis marker genes identified 72 DE-FRGs. The response to stimulus, cellular process, signaling, localization, and biological regulation pathways related to DE-FRGs were enriched. In total, 161 downregulated and 40 upregulated FR-DElncRNAs were chosen by coexpression analysis for further investigation. The MultimiR package and starBase were used to predict miRNAs of DE-FRGs and FR-DElncRNAs, respectively. The upregulated ceRNA network contained 2 FR-DElncRNAs (↑), 19 miRNAs (↓) and 22 DE-FRGs (↑). The downregulated network contained 44 FR-DElncRNAs (↓), 251 miRNAs (↑) and 10 DE-FRGs (↓). Six hub lncRNAs were identified based on the MCC method (LUCAT1 and AC106897.1 ↑; LINC00943, AL583810.1, AC068888.1, and AC125257.1↓). In addition, strong relationships between hub lncRNAs and immune cells were shown by immune infiltration analysis. Finally, validated by qPCR assays of the pulp tissue of IP patients, the expression levels in clinical samples were consistent with the microarray data. Conclusion: Two ceRNA networks were comprehensively constructed, and 6 hub lncRNAs were identified. These genes provide novel insights into the relationship between ferroptosis and IP. Intriguingly, the LINC00943/hsa-miR-29a-3p/PDK4 axis was deemed to be the key node in this network.


Subject(s)
Ferroptosis , MicroRNAs , Pulpitis , RNA, Long Noncoding , Humans , Ferroptosis/genetics , RNA, Long Noncoding/genetics , MicroRNAs/genetics , Biological Assay
4.
J Clin Periodontol ; 50(9): 1264-1279, 2023 09.
Article in English | MEDLINE | ID: mdl-37366309

ABSTRACT

AIM: Necroptosis participates in the pathogenesis of many inflammatory diseases, including periodontitis. Here, we aimed to investigate the role and mechanism of necroptosis inhibitors in attenuating periodontitis. MATERIALS AND METHODS: The Gene Expression Omnibus (GEO) dataset GSE164241 was re-analysed to identify the role of necroptosis in periodontitis. Gingival specimens from healthy subjects or periodontitis patients were collected to evaluate the expression level of necroptosis-associated proteins. The therapeutic effect of necroptosis inhibitors on periodontitis was assessed in vivo and in vitro. Moreover, Transwell assays and Western blotting and siRNA transfection were used to identify the effects of necroptotic human gingival fibroblasts (hGFs) on THP-1 macrophages. RESULTS: Re-analysis revealed that gingival fibroblasts (GFs) in periodontitis gingiva showed the highest area under the curve score of necroptosis. Elevated levels of necroptosis-associated proteins were identified in GFs in periodontitis gingiva collected from patients and mice. In ligature-induced periodontitis mice, local administration of receptor interacting protein kinase 3(RIPK3) inhibitor GSK'872 or sh-mixed-lineage kinase domain-like pseudokinase (Mlkl) markedly abrogated necroptosis and rescued periodontitis. Analogously, necroptosis inhibitors alleviated the inflammatory response and release of damage-associated molecular patterns in lipopolysaccharide- or LAZ (LPS + AZD'5582 + z-VAD-fmk, necroptosis inducer)-induced GFs and then reduced THP-1 cell migration and M1 polarization. CONCLUSIONS: Necroptosis in GFs aggravated gingival inflammation and alveolar bone loss. Necroptosis inhibitors attenuate this process by modulating THP-1 macrophage migration and polarization. This study offers novel insights into the pathogenesis and potential therapeutic targets of periodontitis.


Subject(s)
Gingivitis , Periodontitis , Humans , Mice , Animals , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Kinases/pharmacology , Gingiva/metabolism , Necroptosis , Periodontitis/metabolism , Fibroblasts , Gingivitis/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/pharmacology
5.
Br J Pharmacol ; 180(18): 2436-2451, 2023 09.
Article in English | MEDLINE | ID: mdl-37143319

ABSTRACT

BACKGROUND AND PURPOSE: Low-grade inflammation, a common feature of both diabetes and periodontitis, partly accounts for the complexity and refractoriness of diabetes-associated periodontitis. Adiponectin (APN), the most abundant adipokine in human blood, has been widely reported to have anti-inflammatory functions. Herein, we investigated the ability of an APN receptor agonist, AdipoAI, to alleviate diabetes-associated periodontitis. Furthermore, we revealed the possible mechanism underlying its anti-inflammatory effects. EXPERIMENTAL APPROACH: The maxillary first molar of Zucker diabetic fatty (ZDF) rats was ligated to construct a diabetes-associated periodontitis model, and rats were administered AdipoAI by gavage. We examined diabetes-related indexes, pathological changes in insulin target organs, alveolar bone resorption and systemic and local inflammation. In vitro, transwell assays were used to evaluate monocyte/macrophage migration induced by human gingival fibroblasts (hGFs) with/without AdipoAI treatment. Additionally, we examined chemokine expression levels in hGFs and hGF-induced monocyte/macrophage migration upon siRNA knockdown of Adiponectin receptor expression. Expression of Adipo1/Adipo2 receptors and inflammation-related signalling pathways were examined by IHC and WB, followed by confirmation with an NF-κB P65 inhibitor (BAY 11-7082). KEY RESULTS: AdipoAI lowered fasting blood glucose and serum insulin in ZDF rats and alleviated inflammation in insulin target tissues. Locally, AdipoAI reduced alveolar bone absorption and gingival inflammation. Mechanistically, AdipoAI inhibited hGF-induced monocyte/macrophage migration by reducing CCL2 secretion. In hGFs, AdipoAI attenuated LPS-induced activation of NF-κB P65 and CCL2 expression, which was dependent on the Adipo receptor 1. CONCLUSION AND IMPLICATIONS: AdipoAI, with its ability to alleviate inflammatory damage in tissues, is a candidate for diabetes-associated periodontitis treatment.


Subject(s)
Alveolar Bone Loss , Diabetes Mellitus, Experimental , Insulins , Periodontitis , Rats , Humans , Animals , Adiponectin/metabolism , Receptors, Adiponectin/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , NF-kappa B/metabolism , Rats, Zucker , Periodontitis/drug therapy , Periodontitis/chemically induced , Periodontitis/metabolism , Inflammation/metabolism , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/metabolism , Macrophages/metabolism , Fibroblasts/metabolism , Insulins/metabolism , Lipopolysaccharides/pharmacology
6.
Clin Oral Implants Res ; 34(6): 602-617, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37092468

ABSTRACT

AIM: Diabetics experience severe peri-implant inflammatory bone damage. We aimed to provide powerful evidence supporting the novel adiponectin receptor agonist AdipoAI in treating diabetes-associated peri-implantitis. MATERIALS AND METHODS: Twenty-four ZDF-Leprfa/Crl rats were randomly allocated to three groups (N = 8). After feeding with a high-fat diet to establish diabetic rats, experimental peri-implantitis was induced by implanting titanium rods (1.5 mm diameter and 20 mm length) contaminated with Staphylococcus aureus into the femurs. Radiographic evaluation, microCT, histological analyses and qRT-PCR were used to detect inflammatory infiltration and bone destruction. In vitro, the inhibition by AdipoAI of osteoclastogenesis, including the number and function of osteoclasts, was investigated by TRAP staining, immunofluorescence, qRT-PCR and Western blotting. Immunofluorescence, qRT-PCR and Western blotting were also utilized to explore AdipoR1, APPL1, NF-κB and Wnt5a-Ror2 signalling molecules in this process. One-way ANOVA with Tukey's post hoc test was used to compare the data. RESULTS: AdipoAI reduced inflammation and bone destruction caused by peri-implantitis in diabetic rats, which were manifested by a reduction in F4/80-positive macrophage infiltration by 72%, the number of osteoclasts by 58% and the levels of cytokines (p < .05) in disease group. In vitro, 1 µM AdipoAI decreased the number of osteoclasts to 51%, inhibited F-actin ring formation and reduced the levels of related markers (p < .05). Mechanistically, AdipoAI activated AdipoR1/APPL1 and conversely suppressed the phosphorylation of IκB-α, nuclear translocation of P65 and the Wnt5a-Ror2 signalling pathway (p < .05). CONCLUSIONS: AdipoAI suppressed osteoclastogenesis in diabetes-associated peri-implantitis by inhibiting the NF-κB and Wnt5a-Ror2 pathways via the AdipoR1/APPL1 axis.


Subject(s)
Bone Resorption , Dental Implants , Diabetes Mellitus, Experimental , Peri-Implantitis , Rats , Animals , Peri-Implantitis/pathology , Osteogenesis , NF-kappa B/metabolism , NF-kappa B/pharmacology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Osteoclasts/metabolism , Osteoclasts/pathology , RANK Ligand , Bone Resorption/pathology , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/pharmacology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/pharmacology
7.
Front Immunol ; 13: 963123, 2022.
Article in English | MEDLINE | ID: mdl-36016933

ABSTRACT

Recently, there are many researches on signature molecules of periodontitis derived from different periodontal tissues to determine the disease occurrence and development, and deepen the understanding of this complex disease. Among them, a variety of omics techniques have been utilized to analyze periodontitis pathology and progression. However, few accurate signature molecules are known and available. Herein, we aimed to screened and identified signature molecules suitable for distinguishing periodontitis patients using machine learning models by integrated analysis of TMT proteomics and transcriptomics with the purpose of finding novel prediction or diagnosis targets. Differential protein profiles, functional enrichment analysis, and protein-protein interaction network analysis were conducted based on TMT proteomics of 15 gingival tissues from healthy and periodontitis patients. DEPs correlating with periodontitis were screened using LASSO regression. We constructed a new diagnostic model using an artificial neural network (ANN) and verified its efficacy based on periodontitis transcriptomics datasets (GSE10334 and GSE16134). Western blotting validated expression levels of hub DEPs. TMT proteomics revealed 5658 proteins and 115 DEPs, and the 115 DEPs are closely related to inflammation and immune activity. Nine hub DEPs were screened by LASSO, and the ANN model distinguished healthy from periodontitis patients. The model showed satisfactory classification ability for both training (AUC=0.972) and validation (AUC=0.881) cohorts by ROC analysis. Expression levels of the 9 hub DEPs were validated and consistent with TMT proteomics quantitation. Our work reveals that nine hub DEPs in gingival tissues are closely related to the occurrence and progression of periodontitis and are potential signature molecules involved in periodontitis.


Subject(s)
Periodontitis , Proteomics , Biomarkers , Humans , Periodontitis/genetics , Protein Interaction Maps , Proteomics/methods , Transcriptome
8.
Front Cell Dev Biol ; 10: 832460, 2022.
Article in English | MEDLINE | ID: mdl-35531098

ABSTRACT

As a precursor to type 2 diabetes mellitus (T2D), obesity adversely alters bone cell functions, causing decreased bone quality. Currently, the mechanisms leading to alterations in bone quality in obesity and subsequently T2D are largely unclear. Emerging evidence suggests that long noncoding RNAs (lncRNAs) participate in a vast repertoire of biological processes and play essential roles in gene expression and posttranscriptional processes. Mechanistically, the expression of lncRNAs is implicated in pathogenesis surrounding the aggregation or alleviation of human diseases. To investigate the functional link between specific lncRNA and obesity-associated poor bone quality and elucidate the molecular mechanisms underlying the interaction between the two, we first assessed the structure of the bones in a diet-induced obese (DIO) mouse model. We found that bone microarchitecture markedly deteriorated in the DIO mice, mainly because of aberrant remodeling in the bone structure. The results of in vitro mechanistic experiments supported these observations. We then screened mRNAs and lncRNAs from DIO bones and functionally identified a specific lncRNA, Gm15222. Further analyses demonstrated that Gm15222 promotes osteogenesis and inhibits the expression of adipogenesis-related genes in DIO via recruitment of lysine demethylases KDM6B and KDM4B, respectively. Through this epigenetic pathway, Gm15222 modulates histone methylation of osteogenic genes. In addition, Gm15222 showed a positive correlation with the expression of a neighboring gene, BMP4. Together, the results of this study identified and provided initial characterization of Gm15222 as a critical epigenetic modifier that regulates osteogenesis and has potential roles in targeting the pathophysiology of bone disease in obesity and potential T2D.

9.
BMC Genomics ; 23(1): 1, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34979896

ABSTRACT

BACKGROUD: The mechanism implicated in the osteogenesis of human periodontal ligament stem cells (PDLSCs) has been investigated for years. Previous genomics data analyses showed that long noncoding RNA (lncRNA), microRNA (miRNA) and messenger RNA (mRNA) have significant expression differences between induced and control human PDLSCs. Competing for endogenous RNAs (ceRNA), as a widely studied mechanism in regenerative medicine, while rarely reported in periodontal regeneration. The key lncRNAs and their ceRNA network might provide new insights into molecular therapies of periodontal regeneration based on PDLSCs. RESULTS: Two networks reflecting the relationships among differentially expressed RNAs were constructed. One ceRNA network was composed of 6 upregulated lncRNAs, 280 upregulated mRNAs, and 18 downregulated miRNAs. The other network contained 33 downregulated lncRNAs, 73 downregulated mRNAs, and 5 upregulated miRNAs. Functional analysis revealed that 38 GO terms and 8 pathways related with osteogenesis were enriched. Twenty-four osteogenesis-related gene-centred lncRNA-associated ceRNA networks were successfully constructed. Among these pathways, we highlighted MAPK and TGF-beta pathways that are closely related to osteogenesis. Subsequently, subnetworks potentially linking the GO:0001649 (osteoblast differentiation), MAPK and TGF-beta pathways were constructed. The qRT-PCR validation results were consistent with the microarray analysis. CONCLUSION: We construct a comprehensively identified lncRNA-associated ceRNA network might be involved in the osteogenesis of PDLSCs, which could provide insights into the regulatory mechanisms and treatment targets of periodontal regeneration.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Cell Differentiation/genetics , Gene Regulatory Networks , Humans , MicroRNAs/genetics , Osteogenesis/genetics , Periodontal Ligament , RNA, Long Noncoding/genetics , Stem Cells
10.
Stem Cell Res Ther ; 13(1): 38, 2022 01 29.
Article in English | MEDLINE | ID: mdl-35093155

ABSTRACT

Stem cells transplantation is the main method of tissue engineering regeneration treatment, the viability and therapeutic efficiency are limited. Scaffold materials also play an important role in tissue engineering, whereas there are still many limitations, such as rejection and toxic side effects caused by scaffold materials. Cell sheet engineering is a scaffold-free tissue technology, which avoids the side effects of traditional scaffolds and maximizes the function of stem cells. It is increasingly being used in the field of tissue regenerative medicine. Dental-derived mesenchymal stem cells (DMSCs) are multipotent cells that exist in various dental tissues and can be used in stem cell-based therapy, which is impactful in regenerative medicine. Emerging evidences show that cell sheets derived from DMSCs have better effects in the field of regenerative medicine applications. Extracellular matrix (ECM) is the main component of cell sheets, which is a dynamic repository of signalling biological molecules and has a variety of biological functions and may play an important role in the application of cell sheets. In this review, we summarized the application status, mechanisms that sheets and ECM may play and future prospect of DMSC sheets on regeneration medicine.


Subject(s)
Mesenchymal Stem Cells , Tissue Engineering , Extracellular Matrix , Regenerative Medicine/methods , Stem Cells , Tissue Engineering/methods , Tissue Scaffolds
12.
Stem Cell Rev Rep ; 18(2): 457-473, 2022 02.
Article in English | MEDLINE | ID: mdl-34347272

ABSTRACT

Mesenchymal stem cells (MSCs) have become a promising tool for neurorestorative therapy of neurodegenerative diseases (NDDs), which are mainly characterized by the progressive and irreversible loss of neuronal structure and function in the central or peripheral nervous system. Recently, studies have reported that genetic manipulation mediated by noncoding RNAs (ncRNAs) can increase survival and neural regeneration of transplanted MSCs, offering a new strategy for clinical translation. In this review, we summarize the potential role and regulatory mechanism of two major types of ncRNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), during the neurogenesis of MSCs with gene expression profile analyses. We also overview the realization of MSC-based therapy mediated by ncRNAs in the treatment of spinal cord injury, stroke, Alzheimer's disease and peripheral nerve injury. It is expected that ncRNAs will become promising therapeutic targets for NDD on stem cells, while the underlying mechanisms require further exploration.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Neurodegenerative Diseases , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics
13.
Front Immunol ; 13: 1051654, 2022.
Article in English | MEDLINE | ID: mdl-36703959

ABSTRACT

Background: Adiponectin (APN) is an endogenous adipokine secreted from adipocytes that exerts anti-inflammatory properties. AdipoAI is an orally active adiponectin receptor agonist identified by our group that can emulate APN's anti-inflammatory properties through mechanisms that are not fully understood. LncRNAs, a type of noncoding RNA more than 200 bp in length, have been demonstrated to have abundant biological functions, including in anti-inflammatory responses. Materials and Result: In the current study, we performed a lncRNA microarray in LPS-induced Raw264.7 cells that were prestimulated with AdipoAI and screened 110 DElncRNAs and 190 DEmRNAs. Enrichment analyses were conducted on total mRNAs and DEmRNAs, including GSVA, ssGSEA, GO/KEGG, GSEA, and PPI analysis. Among all these processes, endocytosis was significantly enriched. A coexpression analysis was built based on DElncRNAs and DEmRNAs. Then, using TargetScan and miRwalk to predict related microRNAs of DElncRNAs and DEmRNAs, respectively, we established competing endogenous RNA (ceRNA) networks including 54 mRNAs from 8 GO items. Furthermore, 33 m6A methylation-related marker genes were obtained from a previous study and used for the construction of an m6A-related lncRNA network by coexpression analysis. We identified FTO as the hub gene of the network and 14 lncRNAs that interacted with it. The expression levels of 10 lncRNAs selected from ceRNA and FTO-related lncRNA networks were validated with qRT‒PCR. Finally, macrophage phenotype scores showed that AdipoAI could attenuate the M2b and M2c polarization of macrophages and correlate with the above lncRNAs. Conclusion: Our work reveals that lncRNAs might be involved in the anti-inflammation process of AdipoAI in LPS-induced macrophages through the ceRNA network and the epigenetic regulation of m6A. Mechanistically, these lncRNAs associated with AdipoAI might be related to endocytosis and polarization in macrophages and provide new candidates for the anti-inflammatory application of APN and its receptor agonist.


Subject(s)
RNA, Long Noncoding , Receptors, Adiponectin , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Lipopolysaccharides , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RAW 264.7 Cells , Mice , Animals , Receptors, Adiponectin/agonists
14.
Bioconjug Chem ; 32(4): 627-638, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33779151

ABSTRACT

As dental implants have become one of the main treatment options for patients with tooth loss, the number of patients with peri-implant diseases has increased. Similar to periodontal diseases, peri-implant diseases have been associated with dental plaque formation on implants. Unconventional approaches have been reported to remove plaque from infected implants, but none of these methods can completely and permanently solve the problem of bacterial invasion. Fortunately, the constant development of antibacterial implant materials is a promising solution to this situation. In this review, the development and study of different antibacterial strategies for dental implant materials for the prevention of peri-implantitis are summarized. We hope that by highlighting the advantages and limitations of these antimicrobial strategies, we can assist in the continued development of oral implant materials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Dental Implants , Peri-Implantitis/prevention & control , Anti-Bacterial Agents/therapeutic use , Bacterial Adhesion/drug effects , Coated Materials, Biocompatible , Humans , Metals/chemistry , Peri-Implantitis/drug therapy , Polymers/pharmacology , Surface Properties
15.
Stem Cell Res Ther ; 12(1): 98, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536073

ABSTRACT

BACKGROUND: Human periodontal ligament stem cells (hPDLSCs) are ideal seed cells for periodontal regeneration. A greater understanding of the dynamic protein profiles during osteogenic differentiation contributed to the improvement of periodontal regeneration tissue engineering. METHODS: Tandem Mass Tag quantitative proteomics was utilized to reveal the temporal protein expression pattern during osteogenic differentiation of hPDLSCs on days 0, 3, 7 and 14. Differentially expressed proteins (DEPs) were clustered and functional annotated by Gene Ontology (GO) terms. Pathway enrichment analysis was performed based on the Kyoto Encyclopedia of Genes and Genomes database, followed by the predicted activation using Ingenuity Pathway Analysis software. Interaction networks of redox-sensitive signalling pathways and oxidative phosphorylation (OXPHOS) were conducted and the hub protein SOD2 was validated with western blotting. RESULTS: A total of 1024 DEPs were identified and clustered in 5 distinctive clusters representing dynamic tendencies. The GO enrichment results indicated that proteins with different tendencies show different functions. Pathway enrichment analysis found that OXPHOS was significantly involved, which further predicted continuous activation. Redox-sensitive signalling pathways with dynamic activation status showed associations with OXPHOS to various degrees, especially the sirtuin signalling pathway. SOD2, an important component of the sirtuin pathway, displays a persistent increase during osteogenesis. Data are available via ProteomeXchange with identifier PXD020908. CONCLUSION: This is the first in-depth dynamic proteomic analysis of osteogenic differentiation of hPDLSCs. It demonstrated a dynamic regulatory mechanism of hPDLSC osteogenesis and might provide a new perspective for research on periodontal regeneration.


Subject(s)
Osteogenesis , Periodontal Ligament , Cell Differentiation , Cells, Cultured , Humans , Osteogenesis/genetics , Proteomics , Stem Cells
16.
Biomed Pharmacother ; 137: 111358, 2021 May.
Article in English | MEDLINE | ID: mdl-33561644

ABSTRACT

Adiponectin (APN), which is an adipokine primarily secreted by adipose tissue into the peripheral blood, exerts anti-inflammatory and metabolic regulatory functions in many systemic inflammatory diseases. Periodontitis is a localized inflammatory disease and is also the sixth-leading complication of diabetes. Uncontrolled periodontal inflammation gradually destructs the periodontal supporting apparatus and leads to the consequent loss of teeth. Recently, emerging evidence has revealed an association between APN and periodontitis. Herein, we summarize the basic information of APN and its receptor agonists. We also overview current studies considering the role of APN in periodontitis and discuss the potential mechanisms in terms of inflammation and bone metabolism. At last, we outline the correlation between APN and systemic diseases related periodontitis. Above all, APN and its agonists are promising candidates for the treatment of periodontitis, while the underlying mechanisms and clinical translational application require further exploration.


Subject(s)
Adiponectin/metabolism , Periodontitis/metabolism , Adiponectin/agonists , Adiponectin/genetics , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Bone and Bones/metabolism , Humans , Periodontitis/drug therapy , Periodontitis/genetics , Receptors, Adiponectin/agonists , Receptors, Adiponectin/genetics , Receptors, Adiponectin/metabolism
17.
Arterioscler Thromb Vasc Biol ; 41(3): 1191-1204, 2021 03.
Article in English | MEDLINE | ID: mdl-33406853

ABSTRACT

OBJECTIVE: Noncoding RNAs are emerging as important players in gene regulation and cardiovascular diseases. Their roles in the pathogenesis of atherosclerosis are not fully understood. The purpose of this study was to determine the role played by a previously uncharacterized long noncoding RNA, RP11-728F11.4, in the development of atherosclerosis and the mechanisms by which it acts. Approach and Results: Expression microarray analysis revealed that atherosclerotic plaques had increased expression of RP11-728F11.4 as well as the cognate gene FXYD6 (FXYD domain containing ion transport regulator 6), which encodes a modulator of Na+/K+-ATPase. In vitro experiments showed that RP11-728F11.4 interacted with the RNA-binding protein EWSR1 (Ewings sarcoma RNA binding protein-1) and upregulated FXYD6 expression. Lentivirus-induced overexpression of RP11-728F11.4 in cultured monocytes-derived macrophages resulted in higher Na+/K+-ATPase activity, intracellular cholesterol accumulation, and increased proinflammatory cytokine production. The effects of RP11-728F11.4 were enhanced by siRNA-mediated knockdown of EWSR1 and reduced by downregulation of FXYD domain containing ion transport regulator 6. In vivo experiments in apoE knockout mice fed a Western diet demonstrated that RP11-728F11.4 increased proinflammatory cytokine production and augmented atherosclerotic lesions. CONCLUSIONS: RP11-728F11.4 promotes atherosclerosis, with an influence on cholesterol homeostasis and proinflammatory molecule production, thus representing a potential therapeutic target. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Atherosclerosis/genetics , RNA, Long Noncoding/genetics , Animals , Atherosclerosis/etiology , Atherosclerosis/metabolism , Cells, Cultured , Cholesterol/metabolism , Cytokines/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Female , Gene Knockdown Techniques , Humans , Ion Channels/genetics , Ion Channels/metabolism , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Middle Aged , Plaque, Atherosclerotic/etiology , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , RNA, Long Noncoding/metabolism , RNA-Binding Protein EWS/antagonists & inhibitors , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Up-Regulation
18.
Br J Pharmacol ; 178(2): 280-297, 2021 01.
Article in English | MEDLINE | ID: mdl-32986862

ABSTRACT

BACKGROUND AND PURPOSE: Adiponectin (APN) is an adipokine secreted from adipocytes that binds to APN receptors AdipoR1 and AdipoR2 and exerts an anti-inflammatory response through mechanisms not fully understood. There is a need to develop small molecules that activate AdipoR1 and AdipoR2 and to be used to inhibit the inflammatory response in lipopolysaccharide (LPS)-induced endotoxemia and other inflammatory disorders. EXPERIMENTAL APPROACH: We designed 10 new structural analogues of an AdipoR agonist, AdipoRon (APR), and assessed their anti-inflammatory properties. Bone marrow-derived macrophages (BMMs) and peritoneal macrophages (PEMs) were isolated from mice. Levels of pro-inflammatory cytokines were measured by reverse transcription and real-time quantitative polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and microarray in LPS-induced endotoxemia mice and diet-induced obesity (DIO) mice in which systemic inflammation prevails. Western blotting, immunohistochemistry (IHC), siRNA interference and immunoprecipitation were used to detect signalling pathways. KEY RESULTS: A novel APN receptor agonist named adipo anti-inflammation agonist (AdipoAI) strongly suppresses inflammation in DIO and endotoxemia mice, as well as in cultured macrophages. We also found that AdipoAI attenuated the association of AdipoR1 and APPL1 via myeloid differentiation marker 88 (MyD88) signalling, thus inhibiting activation of nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and c-Maf pathways and limiting the production of pro-inflammatory cytokines in LPS-induced macrophages. CONCLUSION AND IMPLICATIONS: AdipoAI is a promising alternative therapeutic approach to APN and APR to suppress inflammation in LPS-induced endotoxemia and other inflammatory disorders via distinct signalling pathways.


Subject(s)
Adiponectin , Receptors, Adiponectin , Adaptor Proteins, Signal Transducing , Adiponectin/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Inflammation/drug therapy , Lipopolysaccharides , Mice , NF-kappa B/metabolism , Receptors, Adiponectin/metabolism , Receptors, Adiponectin/therapeutic use
19.
Int J Mol Med ; 46(2): 535-545, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32626947

ABSTRACT

In recent years, a large number of studies have shown that the abnormal expression of long non­coding (lnc)RNAs can lead to a variety of different diseases, including inflammatory disorders, cardiovascular disease, nervous system diseases, and cancers. Recent research has demonstrated the biological characteristics of lncRNAs and the important functions of lncRNAs in oral inflammation, precancerous lesions and cancers. The present review aims to explore and discuss the potential roles of candidate lncRNAs in oral diseases by summarizing multiple lncRNA profiles in diseased and healthy oral tissues to determine the altered lncRNA signatures. In addition, to highlight the exact regulatory mechanism of lncRNAs in oral inflammatory disorders, potentially premalignant oral epithelial lesions and oral squamous cell carcinoma. The detection of lncRNAs in oral samples has the potential to be used as a diagnostic and an early detection tool for oral diseases. Furthermore, lncRNAs are promising future therapeutic targets in oral diseases, and research in this field may expand in the future.


Subject(s)
Carcinoma, Squamous Cell/metabolism , RNA, Long Noncoding/metabolism , Administration, Oral , Animals , Carcinoma, Squamous Cell/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , Models, Biological , Periodontitis/genetics , Periodontitis/metabolism , Pulpitis/genetics , Pulpitis/metabolism , RNA, Long Noncoding/genetics
20.
World J Stem Cells ; 12(4): 251-265, 2020 Apr 26.
Article in English | MEDLINE | ID: mdl-32399134

ABSTRACT

Periodontal diseases are infectious diseases that are characterized by progressive damage to dental support tissue. The major goal of periodontal therapy is to regenerate the periodontium destroyed by periodontal diseases. Human periodontal ligament (PDL) tissue possesses periodontal regenerative properties, and periodontal ligament stem cells (PDLSCs) with the capacity for osteogenic differentiation show strong potential in clinical application for periodontium repair and regeneration. Noncoding RNAs (ncRNAs), which include a substantial portion of poly-A tail mature RNAs, are considered "transcriptional noise." Recent studies show that ncRNAs play a major role in PDLSC differentiation; therefore, exploring how ncRNAs participate in the osteogenic differentiation of PDLSCs may help to elucidate the underlying mechanism of the osteogenic differentiation of PDLSCs and further shed light on the potential of stem cell transplantation for periodontium regeneration. In this review paper, we discuss the history of PDLSC research and highlight the regulatory mechanism of ncRNAs in the osteogenic differentiation of PDLSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...