Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37514748

ABSTRACT

Soft robotic grippers offer great advantages over traditional rigid grippers with respect to grabbing objects with irregular or fragile shapes. Shape memory polymer composites are widely used as actuators and holding elements in soft robotic grippers owing to their finite strain, high specific strength, and high driving force. In this paper, a general 3D anisotropic thermomechanical model for woven fabric-reinforced shape memory polymer composites (SMPCs) is proposed based on Helmholtz free energy decomposition and the second law of thermodynamics. Furthermore, the rule of mixtures is modified to describe the stress distribution in the SMPCs, and stress concentration factors are introduced to account for the shearing interaction between the fabric and matrix and warp yarns and weft yarns. The developed model is implemented with a user material subroutine (UMAT) to simulate the shape memory behaivors of SMPCs. The good consistency between the simulation results and experimental validated the proposed model. Furthermore, a numerical investigation of the effects of yarn orientation on the shape memory behavior of the SMPC soft gripper was also performed.

2.
Sensors (Basel) ; 23(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37420579

ABSTRACT

Compared with non-redundant manipulators, the self-motion of 7-DOF redundant manipulators results in an infinite number of inverse kinematics solutions for a desired end-effector pose. This paper proposes an efficient and accurate analytical solution for inverse kinematics of SSRMS-type redundant manipulators. This solution is applicable to SRS-type manipulators with the same configuration. The proposed method involves introducing an alignment constraint to restrain the self-motion and to decompose the spatial inverse kinematics problem into three independent planar subproblems simultaneously. The resulting geometric equations depend on the part of the joint angles, respectively. These equations are then computed recursively and efficiently using the sequences of (θ1,θ7), (θ2,θ6), and (θ3,θ4,θ5), generating up to sixteen sets of solutions for a given desired end-effector pose. Additionally, two complementary methods are proposed for overcoming the possible singular configuration and judging unsolvable poses. Finally, numerical simulations are conducted to investigate the performance of the proposed approach in terms of average calculation time, success rate, average position error, and the ability to plan a trajectory with singular configurations.


Subject(s)
Biomechanical Phenomena , Motion
3.
Appl Opt ; 62(9): 2338-2349, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-37132873

ABSTRACT

To improve the detection capability of satellite-based synthetic aperture radar, a large antenna array with a length scale of 100 meters is urgently needed. However, the structural deformation of the large antenna leads to phase errors, which will significantly reduce the antenna gain; hence, real-time and high-precision profile measurements of the antenna are essential for active compensation of the phase and thus improving the antenna gain. Nevertheless, the conditions of antenna in-orbit measurements are rather severe because of limited installation locations of measurement instruments, large areas, and long distance to be measured, and unstable measurement environments. To deal with the issues, we propose a three-dimensional displacement measurement method for the antenna plate based on laser distance measuring and digital image correlation (DIC). The proposed method uses the DIC method to retrieve the in-plane displacement information in combination with a laser range finder to provide depth information. A Scheimpflug camera is used to overcome the limitation of the depth of field of traditional cameras and enable clear imaging of the full field. Moreover, a vibration compensation scheme is proposed to eliminate the measurement error of the target displacement caused by the random vibration (within 0.01°) of the camera support rod. The results of the experiment in a laboratory setting show that the proposed method can effectively eliminate the measurement error caused by camera vibration (50 mm) and reduce the displacement measurement error to within 1 mm with a measurement range of 60 m, which can meet the measurement requirements of next-generation large satellite antennas.

4.
Materials (Basel) ; 15(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36431746

ABSTRACT

Twisted and coiled polymer (TCP) artificial muscles can exhibit unidirectional actuation similar to skeletal muscles. This paper presents a TCP driven artificial musculoskeletal actuation module that can be used in soft robots. This module can contract in the axis direction, and the contraction displacement and force can be controlled easily. The main body of the actuation module consists of TCP muscles and leaf springs, and the deformation of the module is actuated by the TCP muscles. A prototype was made to test the performance of the module. The design and experimental results of the module are presented. The module can provide contraction motion. Results show that the module can provide a contraction force of 0.7 N with displacement of approximately 6.8 mm at 120 °C when exposed to electrical power of 24 V. The proposed artificial musculoskeletal actuation module can potentially be applied in biomimetic robots and the aerospace field.

5.
J Mater Chem B ; 8(1): 168-176, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31789330

ABSTRACT

Supercontraction is one of the most interesting properties of spider dragline silks. In this study, changes in the secondary structures of the Nephila edulis spider dragline silk after it was subjected to different supercontraction processes were investigated by integrating synchrotron Fourier transform infrared (S-FTIR) microspectroscopy and mechanical characterization. The results showed that after free supercontraction, the ß-sheet lost most of its orientation, while the helix and random coils were almost totally disordered. Interestingly, by conducting different types of supercontractions (i.e., stretching of the free supercontracted spider dragline silk to its original length or performing constrained supercontraction), it was found that although the molecular structures all changed after supercontraction, the mechanical properties almost remained unchanged when the length of the spider dragline silk did not change significantly. The other interesting conclusion obtained is that the manual stretching of a poorly oriented spider dragline silk cannot selectively improve the orientation degree of the ß-sheet in the spider silk, but increase the orientation degree of all conformations (ß-sheet, helix, and random). These experimental findings not only help to unveil the structure-property-function relationship of natural spider silks, but also provide a useful guideline for the design of biomimetic spider fiber materials.


Subject(s)
Silk/chemistry , Spiders/chemistry , Animals , Protein Structure, Secondary , Stress, Mechanical , Structure-Activity Relationship
6.
Polymers (Basel) ; 11(12)2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31771122

ABSTRACT

Carborane-containing aromatic polyimide (CPI) films with ultrahigh thermo-oxidative stability at 700 °C have been prepared by casting poly(amic acid) (PAA) resin solution on a glass surface, followed by thermal imidization at elevated temperatures. The PAA solution was prepared by copolymerization of an aromatic dianhydride and an aromatic diamine mixture, including carborane-containing aromatic diamine in an aprotic solvent. The CPI films showed excellent thermo-oxidative stability at 700 °C due to the multilayered protection layers formed on the film surface by thermal conversion of the carborane group into boron oxides. The boron oxide layer enhanced the degradation activation energy and suppressed the direct contact of inner polymer materials with oxygen molecules in a high-temperature environment, acting as a "self-healing" skin layer on the polyimide materials. The CPI-50 film was still flexible and maintained 50% retention of mechanical strength even after thermo-oxidative aging at 700 °C/5 min. The mechanism of thermo-oxidative degradation was proposed.

7.
ACS Appl Mater Interfaces ; 11(35): 32423-32430, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31409064

ABSTRACT

Solvent freezing is an important method to produce polymer foams with highly tunable pore structure. However, foams prepared from aqueous solution precursors commonly suffer from poor water resistance, whereas those organo-phase systems are not environmental friendly. Here, we present that using an emulsion lyophilization method can overcome such a contradiction and synthesize multifunctional polymer foams. Commercially available polyacrylate-based emulsions with various targeted glass transition temperatures (Tgs) were applied. Adipodihydrazide molecules contained in the water phase of the emulsions reacted with the acetyl groups on the polymers during the freeze-drying, forming elastic networks to maintain the pore structure. The foams can tolerate a 650% elongation without failure and are notch insensitive. The porosity of the foams can be tuned from approximately 45 to 90% via lyophilization of diluted emulsions. The facile blending of emulsions with different targeted Tgs enabled foams with multishape memory capability. Moreover, the foams showed an excellent mechanical damping property, and the slow recovery nature enabled a clip application of clamping extremely weak objects.

8.
J Mater Chem B ; 5(30): 6042-6048, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-32264361

ABSTRACT

Animal silks, as one type of high performance natural material, display a unique combination of modulus, tensile strength, and extensibility that gives rise to a greater toughness than any other natural or synthetic fibers. Many previous researchers have already suggested that such excellent comprehensive mechanical properties should be closely related to their special molecular structures. In this paper, we provide more direct evidence to such an assumption by using Antheraea pernyi silkworm silk (tussah silk) as an example with synchrotron radiation FTIR microspectroscopy as a major characterization tool. Being a silkworm silk, A. pernyi silk has the same function as other silkworm silks (like common Bombyx mori silk), but on the other hand, its amino acid residue sequence is similar to that of spider dragline silk. Thus, A. pernyi silk can be a bridge between silkworm silk and spider silk that is worth investigating. Hence, in this research we designed different forcibly reeled A. pernyi silk samples by controlling the reeling rate, and subsequently tested their mechanical properties and then correlated them with their molecular structures and orientation degrees. Results show that the Young's modulus and breaking stress of forcibly reeled A. pernyi silks increased with the reeling rate, whereas the breaking strain was reduced. In the meantime, structure characterization revealed that the ß-sheet content and molecular chain orientation in A. pernyi silk all increased significantly with an increase in reeling rate. In addition, the mechanical performance of A. pernyi silk can be altered from close to that of spider dragline silk to that of B. mori silkworm silk, with just a change of the reeling rate. All these phenomena clearly indicate that structural changes in A. pernyi silks contrived and controlled by reeling rate have a great effect upon their final mechanical properties. These observations further confirm that the mechanical properties of animal silks are able to be tuned by structure control during harvest time. Furthermore, the results obtained in this study may provide useful guidance when designing and producing high performance regenerated silk fibers for different applications.

9.
ACS Appl Mater Interfaces ; 8(37): 24962-73, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27580039

ABSTRACT

We demonstrate that stronger and more robust nacre-like laminated GO (graphene oxide)/SF (silk fibroin) nanocomposite membranes can be obtained by selectively tailoring the interfacial interactions between "bricks"-GO sheets and "mortar"-silk interlayers via controlled water vapor annealing. This facial annealing process relaxes the secondary structure of silk backbones confined between flexible GO sheets. The increased mobility leads to a significant increase in ultimate strength (by up to 41%), Young's modulus (up to 75%) and toughness (up to 45%). We suggest that local silk recrystallization is initiated in the proximity to GO surface by the hydrophobic surface regions serving as nucleation sites for ß-sheet domains formation and followed by SF assembly into nanofibrils. Strong hydrophobic-hydrophobic interactions between GO layers with SF nanofibrils result in enhanced shear strength of layered packing. This work presented here not only gives a better understanding of SF and GO interfacial interactions, but also provides insight on how to enhance the mechanical properties for the nacre-mimic nanocomposites by focusing on adjusting the delicate interactions between heterogeneous "brick" and adaptive "mortar" components with water/temperature annealing routines.

10.
Mater Sci Eng C Mater Biol Appl ; 64: 376-382, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27127067

ABSTRACT

Metal nanostructures that have unique size- and shape-dependent electronic, optical and chemical properties gain more and more attention in modern science and technology. In this article, we show the possibility that we are able to obtain different gold nanostructures simply with the help of silk nanofibrils. We demonstrate that only by varying the pH of the reaction solution, we get gold nanoparticles, nano-icosahedrons, nanocubes, and even microplates. Particularly, we develop a practical method for the preparation of gold microplates in acid condition in the presence of silk nanofibrils, which is impossible by using other forms of silk protein. We attribute the role of silk nanofibrils in the formation of gold nanostructure to their reduction ability from several specific amino acid residues, and the suitable structural anisotropic features to sustain the crystal growth after the reduction process. Although the main purpose of this article is to demonstrate that silk nanofibrils are able to mediate the formation of different gold nanostructure, we show the potential applications of these resulting gold nanostructures, such as surface-enhanced Raman scattering (SERS) and photothermal transformation effect, as same as those produced by other methods. In conclusion, we present in this communication a facile and green synthesis route to prepare various gold nanostructures with silk nanofibrils by simply varying pH in the reaction system, which has remarkable advantages in future biomedical applications.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Nanofibers/chemistry , Silk/chemistry , Animals , Bombyx , Metal Nanoparticles/ultrastructure , Nanofibers/ultrastructure
11.
J Mater Chem B ; 4(24): 4337-4347, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-32263416

ABSTRACT

The Bombyx mori silkworm is well known as it has been bred by our ancestors with mulberry tree leaves for thousands of years. However, Bombyx mori is not the only silkworm that can produce silk, many other kinds of silkworms can also make silks for commercial use. In this research, we compare the mechanical properties of five different commercial silk fibres including domesticated mulberry Bombyx mori, non-mulberry semi-domesticated eri Samia ricini, and wild tropical tasar Antheraea mylitta and muga Antheraea assamensis. The results demonstrate that the non-mulberry silk fibres have a relatively high extensibility as compared to the mulberry silk fibres. In the meantime, the non-mulberry silk fibres show comparatively unique toughness to the mulberry silk fibres. Synchrotron radiation FTIR microspectroscopy, synchrotron radiation wide angle X-ray diffraction, and Raman dichroism spectroscopy are used to analyze the structural differences among the five species of silk fibres comprehensively. The results clearly show that the mechanical properties of both mulberry and non-mulberry silk fibres are closely related to their structures, such as ß-sheet content, crystallinity, and the molecular orientation along the fibre axis. This study aims to understand the differences in the structural and mechanical properties of different mulberry and non-mulberry silk fibres, which are of importance to the related research on understanding and utilizing the non-mulberry silk as a biomaterial. We believe these investigations not only provide insight into the biology of silk fibroins from the non-mulberry silkworms but also offer guidelines for further biomimetic investigations into the design and manufacture of artificial silk protein fibres with novel morphologies and associated material properties for future use in different fields like bioelectronics, biomaterials and biomedical devices.

12.
ACS Biomater Sci Eng ; 2(11): 1992-2000, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-33440535

ABSTRACT

The extraordinary comprehensive mechanical properties of animal silk (especially spider and silkworm silk) have led to extensive research on the underlying mechanisms involved. Herein, we selected various regenerated silk fibroin (RSF) fibers by choosing different postdraw conditions in a wet-spinning process developed in this laboratory to study their structure-property relationship. We use synchrotron radiation infrared and X-ray diffraction techniques to monitor the structural differences in these RSF fibers and correlate them with their mechanical properties. The results show that with the increase of post draw-down ratio, the ß-sheet content, crystallinity, and molecular orientation in these RSF fibers increase while the crystalline size decreases. The relationship between structural changes and the draw-down ratio reflects the corresponding variation in mechanical properties, namely, an increase in breaking stress with a decline in breaking strain in relation to increases in draw-down ratio. Therefore, these results provide solid and direct evidence on the evolution of structure during the artificial spinning process and on how structure determines the final mechanical performance of silk fibers. We believe this study provides a good background on the relationship between microscopic structure and macroscopic properties in polymer science and may prove useful in the production of high performance materials, not only for silk fibers but also for other natural and synthetic polymeric materials.

13.
J Mater Chem B ; 3(19): 3940-3947, 2015 May 21.
Article in English | MEDLINE | ID: mdl-32262616

ABSTRACT

Animal silks, especially spider dragline silks, have an excellent portfolio of mechanical properties, but it is still a challenge to obtain artificial silk fibers with similar properties to the natural ones. In this paper, we show how to extrude tough regenerated silk fibers by adding a small amount of commercially available functionalized multiwalled carbon nanotubes (less than 1%) through an environmentally friendly wet-spinning process reported by this laboratory previously. Most of the resulting regenerated silk fibers exhibited a breaking energy beyond 130 MJ m-3, which is comparable to spider dragline silks (∼160 MJ m-3). The best of these fibers in terms of performance show a breaking stress of 0.42 GPa, breaking strain of 59%, and breaking energy of 186 MJ m-3. In addition, we used several advanced characterization techniques, such as synchrotron radiation FTIR microspectroscopy and synchrotron radiation X-ray diffraction, to reveal the toughening mechanism in such a protein-inorganic hybrid system. We believe our attempt to produce such tough protein-based hybrid fibers by using cheap, abundant and sustainable regenerated silkworm protein and commercially available functionalized carbon nanotubes, with simplified industrial wet-spinning apparatus, may open up a practical way for the industrial production of super-tough fiber materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...