Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Biol Res ; 53(1): 48, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33081840

ABSTRACT

BACKGROUND: Psoriasis is a common chronic inflammatory skin disease. Keratinocytes hyperproliferation and excessive inflammatory response contribute to psoriasis pathogenesis. The agents able to attenuate keratinocytes hyperproliferation and excessive inflammatory response are considered to be potentially useful for psoriasis treatment. Daphnetin exhibits broad bioactivities including anti-proliferation and anti-inflammatory. This study aims to evaluate the anti-psoriatic potential of daphnetin in vitro and in vivo, and explore underlying mechanisms. METHODS: HaCaT keratinocytes was stimulated with the mixture of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5) to establish psoriatic keratinocyte model in vitro. Cell viability was measured using Cell Counting Kit-8 (CCK-8). Quantitative Real-Time PCR (qRT-PCR) was performed to measure the mRNA levels of hyperproliferative marker gene keratin 6 (KRT6), differentiation marker gene keratin 1 (KRT1) and inflammatory factors IL-1ß, IL-6, IL-8, TNF-α, IL-23A and MCP-1. Western blotting was used to detect the protein levels of p65 and p-p65. Indirect immunofluorescence assay (IFA) was carried out to detect p65 nuclear translocation. Imiquimod (IMQ) was used to construct psoriasis-like mouse model. Psoriasis severity (erythema, scaling) was scored based on Psoriasis Area Severity Index (PASI). Hematoxylin and eosin (H&E) staining was performed to examine histological change in skin lesion. The expression of inflammatory factors including IL-6, TNF-α, IL-23A and IL-17A in skin lesion was measured by qRT-PCR. RESULTS: Daphnetin attenuated M5-induced hyperproliferation in HaCaT keratinocytes. M5 stimulation significantly upregulated mRNA levels of IL-1ß, IL-6, IL-8, TNF-α, IL-23A and MCP-1. However, daphnetin treatment partially attenuated the upregulation of those inflammatory cytokines. Daphnetin was found to be able to inhibit p65 phosphorylation and nuclear translocation in HaCaT keratinocytes. In addition, daphnetin significantly ameliorate the severity of skin lesion (erythema, scaling and epidermal thickness, inflammatory cell infiltration) in IMQ-induced psoriasis-like mouse model. Daphnetin treatment attenuated IMQ-induced upregulation of inflammatory cytokines including IL-6, IL-23A and IL-17A in skin lesion of mice. CONCLUSIONS: Daphnetin was able to attenuate proliferation and inflammatory response induced by M5 in HaCaT keratinocytes through suppression of NF-κB signaling pathway. Daphnetin could ameliorate the severity of skin lesion and improve inflammation status in IMQ-induced psoriasis-like mouse model. Daphnetin could be an attractive candidate for future development as an anti-psoriatic agent.


Subject(s)
Adjuvants, Immunologic , Anti-Inflammatory Agents , Imiquimod , Inflammation , Psoriasis , Umbelliferones , Adjuvants, Immunologic/adverse effects , Animals , Anti-Inflammatory Agents/pharmacology , Cell Proliferation , Humans , Imiquimod/adverse effects , Inflammation/drug therapy , Keratinocytes , Mice , Mice, Inbred BALB C , Psoriasis/chemically induced , Psoriasis/drug therapy , Rabbits , Umbelliferones/pharmacology
2.
BMC Pharmacol Toxicol ; 21(1): 41, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32493482

ABSTRACT

BACKGROUND: Psoriasis is a chronic inflammatory skin disease affecting 2-3% of the population worldwide. Hyperproliferative keratinocytes were thought to be an amplifier of inflammatory response, thereby sustaining persistence of psoriasis lesions. Agents with the ability to inhibit keratinocyte proliferation or induce apoptosis are potentially useful for psoriasis treatment. 18ß-Glycyrrhetinic acid (GA), an active metabolite of glycyrrhizin, exhibits diverse pharmacological activities, including anti-inflammatory, anti-bacteria and anti-proliferation. The current study aims to evaluate the effects of GA on the proliferation and apoptosis of human HaCaT keratinocytes in vitro and investigate the effects of GA on the skin lesions of imiquimod (IMQ)-induced psoriasis-like mouse model in vivo. METHODS: Cell viability was assayed by CCK-8. Flow cytometry was performed to measure apoptosis and reactive oxygen species (ROS), with Annexin V-FITC/PI detection kit and DCFH-DA probe respectively. Caspase 9/3 activities were measured using caspase activity assay kits. The protein levels of Akt and p-Akt were determined using Western blotting. IMQ was applied to induce psoriasis-like skin lesions in mice. The histological change in mouse skin lesions was detected using hematoxylin and eosin (H&E) staining. The severity of skin lesions was scored based on Psoriasis Area Severity Index (PASI). RT-PCR was employed to examine the relative expression of TNF-α, IL-22 and IL-17A in mouse skin lesions. RESULTS: GA decreased HaCaT keratinocytes viability and induced cell apoptosis in a dose-dependent manner. In the presence of GA, intracellular ROS levels were significantly elevated. NAC, a ROS inhibitor, attenuated GA-mediated HaCaT keratinocytes growth inhibition and apoptosis. In addition, GA treatment remarkably decreased p-Akt protein level, which could be restored partially when cells were co-treated with GA and NAC. LY294002 (a PI3K inhibitor) treatment significantly enhanced GA-mediated cytotoxicity. Moreover, GA ameliorated IMQ-induced psoriasis-like skin lesions in mice. CONCLUSIONS: GA inhibits proliferation and induces apoptosis in HaCaT keratinocytes through ROS-mediated inhibition of PI3K-Akt signaling pathway, and ameliorates IMQ-induced psoriasis-like skin lesions in mice.


Subject(s)
Glycyrrhetinic Acid/analogs & derivatives , Psoriasis/drug therapy , Animals , Apoptosis/drug effects , Cell Line , Cytokines/genetics , Female , Glycyrrhetinic Acid/pharmacology , Glycyrrhetinic Acid/therapeutic use , Humans , Imiquimod , Keratinocytes/drug effects , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Psoriasis/chemically induced , Psoriasis/metabolism , Psoriasis/pathology , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Skin/drug effects , Skin/metabolism , Skin/pathology
3.
Biol. Res ; 53: 48, 2020. graf
Article in English | LILACS | ID: biblio-1142415

ABSTRACT

BACKGROUND: Psoriasis is a common chronic inflammatory skin disease. Keratinocytes hyperproliferation and excessive inflammatory response contribute to psoriasis pathogenesis. The agents able to attenuate keratinocytes hyper-proliferation and excessive inflammatory response are considered to be potentially useful for psoriasis treatment. Daphnetin exhibits broad bioactivities including anti-proliferation and anti-inflammatory. This study aims to evaluate the anti-psoriatic potential of daphnetin in vitro and in vivo, and explore underlying mechanisms. METHODS: HaCaT keratinocytes was stimulated with the mixture of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5) to establish psoriatic keratinocyte model in vitro. Cell viability was measured using Cell Counting Kit-8 (CCK-8). Quantitative Real-Time PCR (qRT-PCR) was performed to measure the mRNA levels of hyperproliferative marker gene keratin 6 (KRT6), differentiation marker gene keratin 1 (KRT1) and inflammatory factors IL-1ß, IL-6, IL-8, TNF-α, IL-23A and MCP-1. Western blotting was used to detect the protein levels of p65 and p-p65. Indirect immunofluorescence assay (IFA) was carried out to detect p65 nuclear translocation. Imiquimod (IMQ) was used to construct psoriasis-like mouse model. Psoriasis severity (erythema, scaling) was scored based on Psoriasis Area Severity Index (PASI). Hematoxylin and eosin (H&E) staining was performed to examine histological change in skin lesion. The expression of inflammatory factors including IL-6, TNF-α, IL-23A and IL-17A in skin lesion was measured by qRT-PCR. RESULTS: Daphnetin attenuated M5-induced hyperproliferation in HaCaT keratinocytes. M5 stimulation significantly upregulated mRNA levels of IL-1ß, IL-6, IL-8, TNF-α, IL-23A and MCP-1. However, daphnetin treatment partially attenuated the upregulation of those inflammatory cytokines. Daphnetin was found to be able to inhibit p65 phosphorylation and nuclear translocation in HaCaT keratinocytes. In addition, daphnetin significantly ameliorate the severity of skin lesion (erythema, scaling and epidermal thickness, inflammatory cell infiltration) in IMQ-induced psoriasis-like mouse model. Daphnetin treatment attenuated IMQ-induced upregulation of inflammatory cytokines including IL-6, IL-23A and IL-17A in skin lesion of mice. CONCLUSIONS: Daphnetin was able to attenuate proliferation and inflammatory response induced by M5 in HaCaT keratinocytes through suppression of NF-κB signaling pathway. Daphnetin could ameliorate the severity of skin lesion and improve inflammation status in IMQ-induced psoriasis-like mouse model. Daphnetin could be an attractive candidate for future development as an anti-psoriatic agent.


Subject(s)
Humans , Animals , Mice , Rabbits , Psoriasis/chemically induced , Psoriasis/drug therapy , Umbelliferones/pharmacology , Adjuvants, Immunologic/adverse effects , Imiquimod/adverse effects , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Keratinocytes , Cell Proliferation , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...