Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 507, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844853

ABSTRACT

BACKGROUND: Powdery mildew, caused by Eeysiphe heraclei, seriously threatens Heracleum moellendorffii Hance. Plant secondary metabolites are essential to many activities and are necessary for defense against biotic stress. In order to clarify the functions of these metabolites in response to the pathogen, our work concentrated on the variations in the accumulation of secondary metabolites in H. moellendorffii during E. heraclei infection. RESULTS: Following E. heraclei infection, a significant upregulation of coumarin metabolites-particularly simple coumarins and associated genes was detected by RNA-seq and UPLC-MS/MS association analysis. Identifying HmF6'H1, a Feruloyl CoA 6'-hydroxylase pivotal in the biosynthesis of the coumarin basic skeleton through ortho-hydroxylation, was a significant outcome. The cytoplasmic HmF6'H1 protein was shown to be able to catalyze the ortho-hydroxylation of p-coumaroyl-CoA and caffeoyl-CoA, resulting in the formation of umbelliferone and esculetin, respectively. Over-expression of the HmF6'H1 gene resulted in increased levels of simple coumarins, inhibiting the biosynthesis of furanocoumarins and pyranocoumarins by suppressing PT gene expression, enhancing H. moellendorffii resistance to powdery mildew. CONCLUSIONS: These results established HmF6'H1 as a resistance gene aiding H. moellendorffii in combatting E. heraclei infection, offering additional evidence of feruloyl-CoA 6'-hydroxylase role in catalyzing various types of simple coumarins. Therefore, this work contributes to our understanding of the function of simple coumarins in plants' defense against powdery mildew infection.


Subject(s)
Ascomycota , Coumarins , Metabolome , Plant Diseases , Transcriptome , Coumarins/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Ascomycota/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Apiaceae/metabolism , Apiaceae/genetics , Disease Resistance/genetics
2.
Bioorg Med Chem ; 107: 117761, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38795571

ABSTRACT

Small-molecule glucagon-like peptide-1 receptor (GLP-1R) agonists are recognized as promising therapeutics for type 2 diabetes mellitus (T2DM) and obesity. Danuglipron, an investigational small-molecule agonist, has demonstrated high efficacy in clinical trials. However, further development of danuglipron is challenged by a high rate of gastrointestinal adverse events. While these effects may be target-related, it is plausible that the carboxylic acid group present in danuglipron may also play a role in these outcomes by affecting the pharmacokinetic properties and dosing regimen of danuglipron, as well as by exerting direct gastrointestinal irritation. Therefore, this study aims to replace the problematic carboxylic acid group by exploring the internal binding cavity of danuglipron bound to GLP-1R using a water molecule displacement strategy. A series of novel triazole-containing compounds have been designed and synthesized during the structure-activity relationship (SAR) study. These efforts resulted in the discovery of compound 2j with high potency (EC50 = 0.065 nM). Moreover, docking simulations revealed that compound 2j directly interacts with the residue Glu387 within the internal cavity of GLP-1R, effectively displacing the structural water previously bound to Glu387. Subsequent in vitro and in vivo experiments demonstrated that compound 2j had comparable efficacy to danuglipron in enhancing insulin secretion and improving glycemic control. Collectively, this study offers a practicable approach for the discovery of novel small-molecule GLP-1R agonists based on danuglipron, and compound 2j may serve as a lead compound to further exploit the unoccupied internal cavity of danuglipron's binding pocket.


Subject(s)
Glucagon-Like Peptide-1 Receptor Agonists , Animals , Humans , Male , Mice , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Dose-Response Relationship, Drug , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor Agonists/chemistry , Glucagon-Like Peptide-1 Receptor Agonists/pharmacology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Molecular Docking Simulation , Molecular Structure , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis
3.
Elife ; 122024 May 22.
Article in English | MEDLINE | ID: mdl-38775664

ABSTRACT

Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.


Subject(s)
Macrophages , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Animals , Macrophages/immunology , Mice , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Myocardial Ischemia/immunology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Infarction/immunology , Male , Myocardial Reperfusion Injury/immunology , Myocardial Reperfusion Injury/pathology , Mice, Inbred C57BL , Myocardium/pathology , Myocardium/immunology , Disease Models, Animal
4.
Bioorg Med Chem ; 96: 117511, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37976806

ABSTRACT

The G protein-coupled receptor 35 (GPR35) has been identified as a potential target in the treatment of inflammatory bowel disease (IBD). However, the lack of high and equipotent agonists on both human and mouse GPR35 has limited the in vivo study of GPR35 agonists in mouse models of IBD. In this study, structural modifications to lodoxamide provides a series of high and equivalent agonists on human, mouse, and rat GPR35. These molecules eliminate the species selectivity of human to mouse and rat orthologs that have been prevalent with GPR35 agonists including lodoxamide. The cLogP properties are also optimized to make the compounds more obedient to drug-like rules, yielding compound 4b (cLogP = 2.41), which activates human, mouse or rat GPR35 with EC50 values of 76.0, 63.7 and 77.8 nM, respectively. Oral administration of compound 4b at 20 mg/kg alleviates clinical symptoms of DSS-induced IBD in mice, and is slightly more effective than 5-ASA at 200 mg/kg. In summary, it can serve as a new start point for exploiting more potent GPR35 agonists without species differences for the treatment of IBD, and warrants further study.


Subject(s)
Inflammatory Bowel Diseases , Receptors, G-Protein-Coupled , Rats , Mice , Humans , Animals , Receptors, G-Protein-Coupled/agonists , Oxamic Acid/pharmacology , Inflammatory Bowel Diseases/drug therapy , Administration, Oral
6.
ACS Chem Neurosci ; 14(21): 3941-3958, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37823773

ABSTRACT

Nowadays, the identification of agonists and antagonists represents a great challenge in computer-aided drug design. In this work, we developed a computational protocol enabling us to design/screen novel chemicals that are likely to serve as selective CB2 agonists. The principle of this protocol is that by calculating the ligand-residue interaction profile (LRIP) of a ligand binding to a specific target, the agonist-antagonist function of a compound is then able to be determined after statistical analysis and free energy calculations. This computational protocol was successfully applied in CB2 agonist development starting from a lead compound, and a success rate of 70% was achieved. The functions of the synthesized derivatives were determined by in vitro functional assays. Moreover, the identified potent CB2 agonists and antagonists strongly interact with the key residues identified using the already known potent CB2 agonists/antagonists. The analysis of the interaction profile of compound 6, a potent agonist, showed strong interactions with F2.61, I186, and F2.64, while compound 39, a potent antagonist, showed strong interactions with L17, W6.48, V6.51, and C7.42. Still, some residues including V3.32, T3.33, S7.39, F183, W5.43, and I3.29 are hotspots for both CB2 agonists and antagonists. More significantly, we identified three hotspot residues in the loop, including I186 for agonists, L17 for antagonists, and F183 for both. These hotspot residues are typically not considered in CB1/CB2 rational ligand design. In conclusion, LRIP is a useful concept in rationally designing a compound to possess a certain function.


Subject(s)
Drug Design , Receptor, Cannabinoid, CB2 , Ligands , Receptor, Cannabinoid, CB1
7.
J Cell Mol Med ; 27(22): 3478-3490, 2023 11.
Article in English | MEDLINE | ID: mdl-37610095

ABSTRACT

Breast cancer is a highly prevalent malignancy with the first morbidity and the primary reason for female cancer-related deaths worldwide. Acid ground nano-realgar processed product (NRPP) could inhibit breast cancer cell proliferation and induce autophagy in our previous research; however, the underlying mechanisms are still unclear. Therefore, this research aimed to verify whether NRPP induces breast cancer mitophagy and explore the mitophagy-mediated mechanism. Primarily, rhodamine-123 assay and transmission electron microscopy were applied to detect mitochondrial membrane potential (MMP) and ultrastructural changes in the MDA-MB-435S cells, respectively. Mito-Tracker Green/Lyso-Tracker Red staining, western blot, immunofluorescence and RT-PCR were used to explore molecular mechanisms of NRPP-induced mitophagy in vitro. MDA-MB-435S breast cancer xenograft models were established to assess the activity and mechanisms of NRPP in vivo. Our results showed that NRPP decreased MMP and increased autophagosome numbers in MDA-MB-435S cells and activated mitophagy. Furthermore, mitophagy was consolidated because mitochondria and lysosomes colocalized phenomenology were observed, and the expression of LC3II/I and COXIV was upregulated. Additionally, we found the p53/BNIP3/NIX pathway was activated. Finally, NRPP inhibited tumour growth and downregulated the levels of TNF-α, IL-1ß and IL-6. Necrosis, damaged mitochondria and autophagosomes were observed in xenograft tumour cells, and proteins and mRNA levels of LC3, p53, BNIP3 and NIX were increased. Overall, NRPP inhibited MDA-MB-435S cell proliferation and tumour growth by inducing mitophagy via the p53/BNIP3/NIX pathway. Thus, NRPP is a promising candidate for breast cancer treatment.


Subject(s)
Breast Neoplasms , Mitophagy , Humans , Female , Mitophagy/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Autophagy , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Membrane Proteins/genetics , Proto-Oncogene Proteins/metabolism
8.
Environ Sci Pollut Res Int ; 30(43): 97005-97024, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37584795

ABSTRACT

Environmental governance has emerged as a crucial tactic to support the sustainable development of human civilization in light of the serious environmental issues. Meanwhile, during the process of promoting the high-quality development of China's economy, digital transformation plays a significant role in improving the total factor productivity of the manufacturing sector. We seek to find out whether urban environmental governance has an impact on micro-enterprises, and therefore, the study selects the data of A-share listed manufacturing companies from 2012 to 2020 to study the effect of digital transformation on the total factor productivity of the manufacturing industry and how the effect of environmental governance affects the relationship between digital transformation and total factor productivity. The results unveil that digital transformation can significantly contribute to the total factor productivity of the manufacturing industry. At the same time, digital transformation can promote the high-quality development of enterprises by promoting the fulfillment of corporate social responsibility. Additionally, it is shown that poor environmental governance will weaken the promoting effect of digital transformation on total factor productivity. Furthermore, in state-owned companies and non-heavy polluting industries, environmental governance has a more significant moderating influence on digital transformation and total factor productivity. This study enriches the literature on urban environmental governance and micro-enterprise development, and they support the notion that, from the standpoints of environmental protection and economic development, the level of environmental governance should be continuously optimized and the development of ecological civilization should be strengthened.


Subject(s)
Conservation of Natural Resources , Environmental Policy , Humans , Commerce , Manufacturing Industry , China , Economic Development
9.
Int J Biol Macromol ; 242(Pt 2): 124702, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37146859

ABSTRACT

The present study sought to explore the potential of raw potato flour prepared from two common potato varieties (Atlantic and Favorita) as a thickener and the underlying mechanisms of its thickening stability based on the chemical component content, chemical group, starch, pectin, cell wall integrity, and the cell wall strength of raw potato flour. The raw potato flour prepared from Favorita potato (FRPF) showed great potential as a thickener with a valley viscosity/peak viscosity of 97.24 %. Additionally, the viscosity of FRPF after heat treatment, acid treatment and shear treatment was maintained at 70.73 %, 65.99 % and 78.89 % of the original viscosity, respectively, which is better than that of ARPF (44.98 %, 47.03 % and 61.57 %, respectively). The results also revealed that high pectin content, cell wall integrity and strength contributed significantly to the thickening stability of potato meal, which was achieved by limiting the swelling and disintegration of starch. Finally, the correctness of the principle was verified using the raw potato flour prepared from four types of potatoes (Heijingang, Innovator, Qingshu No. 9, and Guinongshu No. 1). Overall, the development of thickener from raw potato flour has broadened the variety of clean label additives in the food industry.


Subject(s)
Solanum tuberosum , Starch , Starch/chemistry , Flour , Polysaccharides , Viscosity , Pectins , Solanum tuberosum/chemistry
10.
Materials (Basel) ; 16(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37048900

ABSTRACT

In this study, an E-fenton oxidation system based on Co-N co-doped carbon nanotubes (Co-N-CNTs) was designed. The Co-N-CNTs system showed fast degradation efficiency and reusability for the degradation of rhodamine B (RhB). The XRD and SEM results showed that the Co-N co-doped carbon nanotubes with diameters ranging from 40 to 400 nm were successfully prepared. The E-Fenton degradation performance of Co-N-CNTs was investigated via CV, LSV and AC impedance spectroscopy. The yield of H2O2 could reach 80 mg/L/h within 60 min, and the optimal voltage and preparation temperature for H2O2 yield in this system was -0.7 V (vs. SCE) and 800 °C. For the target pollutant of RhB, the fast removal of RhB was obtained via the Co-N-CNTS/E-Fenton system (about 91% RhB degradation occurred during 60 min), and the •OH played a major role in the RhB degradation. When the Fe2+ concentrations increased from 0.3 to 0.4 mM, the RhB degradation efficiency decreased from 91% to about 87%. The valence state of Co in the Co-N-C catalyst drove a Co2+/Co3+ cycle, which ensured the catalyst had good E-Fenton degradation efficiency. This work provides new insight into the mechanism of an E-Fenton system with carbon-based catalysts for the efficient degradation of RhB.

11.
Front Genet ; 14: 1142968, 2023.
Article in English | MEDLINE | ID: mdl-37020998

ABSTRACT

Background: Wilson's disease (WD) is an autosomal recessive disease that is caused by mutations in the ATP7B (a copper-transporting P-type ATPase) gene. The disease has a low prevalence and is characterized by a copper metabolism disorder. However, various characteristics of the disease are determined by race and geographic region. We aimed to discover novel ATP7B mutations in pediatric patients with WD from Yunnan province, where there is a high proportion of ethnic minorities. We also performed a comprehensive analysis of ATP7B mutations in the different ethnic groups found in Southwest China. Methods: We recruited 45 patients who had been clinically diagnosed with WD, from 44 unrelated families. Routine clinical examinations and laboratory evaluations were performed and details of age, gender, ethnic group and symptoms at onset were collected. Direct sequencing of the ATP7B gene was performed in 39 of the 45 patients and their families. Results: In this study, participants came from seven different ethnic groups in China: Han, Bai, Dai, Zhuang, Yi, Hui and Jingpo. Three out of ten patients from ethnic minorities presented with elevated transaminases, when compared to the majority of the Han patients. Forty distinct mutations (28 missense, six splicing, three non-sense, two frameshift and one mutation of uncertain significance) were identified in the 39 patients with WD. Four of the mutations were novel and the most frequent mutation was c.2333G > T (p.R778L, allelic frequency: 15.38%). Using the phenotype-genotype correlation analysis, patients from ethnic minorities were shown to be more likely to have homozygous mutations (p = 0.035) than Han patients. The patients who carried the c.2310C > G mutation had lower serum ceruloplasmin levels (p = 0.012). In patients with heterozygous mutations, c.3809A > G was significantly associated with ethnic minorities (p = 0.042). The frequency of a protein-truncating variant (PTV) in Han patients was 34.38% (11/32), while we did not find PTV in patients from ethnic minorities. Conclusion: This study revealed genetic defects in 39 pediatric patients with WD from Yunnan province. Four novel mutations were identified and have enriched the WD database. We characterized the genotypes and phenotypes in different minorities, which will enhance the current knowledge on the population genetics of WD in China.

12.
Fetal Pediatr Pathol ; 42(3): 483-487, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36331524

ABSTRACT

Background: Langerhans cell histiocytosis (LCH) has heterogeneous presentations involving single or multiple systems, but simultaneous isolated skin and gastrointestinal involvement is not common. Case report: A female infant with intermittent bloody diarrhea was unresponsive for treatment of food allergy. Histology of gastric and colonic tissues demonstrated Langerhan's cell histiocytosis. The infant also had red rashes that were histologically proven Langerhan's cell histiocytosis. Chemotherapy utilized vincristine, cytarabine and prednisone. The bloody diarrhea and rash completely resolved with no recurrence in the 11 months of follow-up. Conclusion: Langerhan cell histiocytosis may present with simultaneous gastrointestinal and skin involvement.


Subject(s)
Histiocytosis, Langerhans-Cell , Skin , Infant , Humans , Child , Female , Skin/pathology , Histiocytosis, Langerhans-Cell/complications , Histiocytosis, Langerhans-Cell/diagnosis , Histiocytosis, Langerhans-Cell/drug therapy , Diarrhea/pathology , Colon
13.
Anal Chem ; 94(51): 18009-18016, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36519891

ABSTRACT

Traditional spherical nucleic acids (SNAs) based on gold nanoparticles (AuNPs) assembled through Au-S covalent bonds are widely used in DNA-programmable assembly, biosensing, imaging, and therapeutics. However, biological thiols and other chemical substances can break the Au-S bonds and cause response distortion during the application process, specifically in cell environments. Herein, we report a new type of SNAs based on 2'-fluorinated DNA-functionalized AuNPs with excellent colloidal stability under high salt conditions (up to 1 M NaCl) and over a broad pH range (1-14), as well as resistance to biothiols. The fluorinated spherical nucleic acid probe (Au/FDNA probe) could detect targeted cancer cells with high fidelity. Compared to the traditional thiolated DNA-functionalized AuNP probe (Au-SDNA probe), the Au/FDNA probe exhibited a higher sensitivity to the target and a lower signal-to-background ratio. Furthermore, the Au/FDNA probe could discriminate target cancer cells in a mixed culture system. Using the proposed FDNA functionalization method, previously developed SNAs based on AuNPs could be directly adapted, which might open a new avenue for the design and application of SNAs.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nucleic Acids , Gold/chemistry , Metal Nanoparticles/chemistry , DNA/chemistry , Nucleic Acids/chemistry , DNA Probes/chemistry , Biosensing Techniques/methods
14.
Contrast Media Mol Imaging ; 2022: 5383146, 2022.
Article in English | MEDLINE | ID: mdl-35909588

ABSTRACT

The abnormal proliferation, migration, and epithelial-mesenchymal transformation (EMT) of lens epithelial cells (LECs) are the main reasons for vision loss caused by posterior capsular opacification (PCO) after cataract surgery. Insulin-like growth factor-1 (IGF-1) was found to be associated with the pathogenesis of cataracts, but its biological role in PCO is poorly understood. In the present study, IGF-1 overexpression facilitated the proliferation, migration, and EMT, whereas knockdown of IGF-1 markedly suppressed the proliferation, migration, and TGF-ß2-induced EMT of LECs. Additionally, to evaluate valuable microRNAs (miRNAs) which target IGF-1 to modulate LEC-EMT, we predicted miR-3666 might regulate IGF-1 by binding its 3'UTR according to the bioinformatics database. Furthermore, we verified that miR-3666 directly targeted IGF-1 by luciferase reporter assay. By using miR-3666 mimics, cell proliferation, migration, and invasion were suppressed, while being enhanced by the reduction of miR-3666. Knockout of IGF1 reverses the effect of the miR-3666 inhibitor on the malignant behavior of LECs. These results indicate the role of miR-3666/IGF-1 in LEC-EMT that offers new strategies for the therapy and prevention of PCO.


Subject(s)
Capsule Opacification , Insulin-Like Growth Factor I , Lens, Crystalline , MicroRNAs , Capsule Opacification/genetics , Capsule Opacification/metabolism , Capsule Opacification/pathology , Cell Movement/genetics , Cell Proliferation , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/physiology , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , MicroRNAs/genetics , MicroRNAs/metabolism
15.
J Pharmacol Exp Ther ; 383(1): 80-90, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36041883

ABSTRACT

Anwulignan (AN) is a monomer lignan from Schisandra sphenanthera Rehd. et Wits (Schisandra sphenanthera fructus, Schisandra sphenanthera). The protective effect of AN against the indomethacin (IND)-induced gastric injury to mice and the related mechanism of action was investigated in this study. The effect of AN was mainly assessed by observing the gastric tissue morphology, gastric ulcer index (GUI), ulcer inhibition rate (UIR), gastric juice volume (GJV) and pH value. Chemical colorimetry, immunofluorescence, ELISA, and Western blot were used to detect related factors in the gastric tissue. The results showed that AN reduced the GUI, increased the UIR, inhibited the GJV, and increased the gastric pH value. AN significantly increased cyclooxygenase-1, cyclooxygenase-2, and prostaglandin E2 expression levels in the gastric tissue, activated nuclear factor (erythroid-derived 2)-like 2 (Nrf2), increased heme oxygenase-1 expression, enhanced the activity of superoxide dismutase and glutathione peroxidase, and decreased the malondialdehyde content. AN reduced the phosphorylation of nuclear factor-κ gene binding (NF-κB) p65 and its nuclear translocation, the key protein of NF-κB signaling pathway in the gastric tissue, and the content of the pathway downstream signaling molecules, including interleukin-6, interleukin-1ß, and tumor necrosis factor-α, to play an anti-inflammatory role. AN inhibited the downstream signals B-cell lymphoma 2-associated x protein and cleaved caspase-3 in gastric tissue, and activated B-cell lymphoma 2, to play an antiapoptotic role, which were further verified by Hoechst staining. Therefore, AN has a significant protection against the gastric injury induced by IND in mice, and the mechanism may be concerned in its activation of Nrf2, inhibition of NF-κB signaling pathway, and anti-apoptotic effect. SIGNIFICANCE STATEMENT: Anwulignan (AN) significantly reduced the indomethacin-induced gastric injury in mice, and its antioxidation, anti-inflammation, and antiapoptosis were considered to be involve in the effect, suggesting that AN should be a potential drug or food supplement for gastric injury induced by indomethacin.


Subject(s)
Lignans , NF-E2-Related Factor 2 , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Caspase 3 , Cyclooxygenase 1 , Cyclooxygenase 2 , Dinoprostone , Glutathione Peroxidase , Heme Oxygenase-1/metabolism , Indomethacin , Interleukin-1beta/genetics , Interleukin-6 , Malondialdehyde/metabolism , Mice , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-bcl-2 , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Curr Med Sci ; 42(4): 720-732, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35788945

ABSTRACT

OBJECTIVE: Realgar is a traditional mineral Chinese medicine with antitumor effects, but it has high toxicity and low efficacy in its crude form. The purpose of this study was to optimize realgar to increase its efficacy and therapeutic potential. METHODS: Crude realgar (CR) was mechanically ground to obtain nano-realgar (NR), and then nano-realgar processed products (NRPPs) were obtained using three different traditional Chinese medicine processing methods: grinding in water, acid water, and alkali water, respectively. RESULTS: By analyzing the size distribution of nanoparticles and the content of arsenic trioxide (As2O3; ATO), we found that acid water-ground NRPPs had the characteristics of high purity and low toxicity. The effects of CR, NR, and NRPPs on proliferation, cell cycle, and apoptosis of MCF-7 cells were detected, and the ability of NRPPs to induce apoptosis in MCF-7 cells was analyzed. The results showed that the average particle size of acid water-ground NRPPs was 137.7 nm, and the content of ATO was 2.83 mg/g. Acid water-ground NRPPs showed better effects on inhibiting proliferation, cell cycle, and apoptosis of MCF-7 cells than CR and NR. Western blot assays further confirmed that acid water-ground NRPPs upregulated the protein expression of TP53, Bax, cytochrome c, caspase-9, and caspase-3 in MCF-7 cells (P<0.05) and inhibited the expression of Bcl-2 (P<0.05). CONCLUSION: These results suggest that acid water-ground NRPPs can induce apoptosis of MCF-7 cells through regulating mitochondrial-mediated apoptosis, providing evidence for the clinical application of realgar.


Subject(s)
Breast Neoplasms , Apoptosis , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Humans , MCF-7 Cells , Water/pharmacology
17.
Colloids Surf B Biointerfaces ; 206: 111970, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34280683

ABSTRACT

This work was designed to evaluate the efficacy of hyaluronic acid (HA) functionalized tubular poly-lactic acid (PLA) microfibers in directing the luminal pre-endothelialization of vascular endothelial cells (ECs). Tubular HA/PLA microfibers with hierarchical architecture were prepared by electrospinning and chemical cross-linking process. A layer of HA microfibrous film coating was fixed on the inner wall surface of the tubular HA/PLA microfibers, resulting in higher anisotropy wettability and relatively lower surface energy and roughness. We confirmed that HA coating on PLA microfibers surface have reduced hemolytic activity and coagulation degree. Mouse vascular ECs exhibited surface-dependent differences in cell elongation and proliferation (HA/PLA > PLA). Compared with PLA microfibers, the gene expression levels of platelet EC adhesion molecule-1 (PECAM-1/CD31) and vascular endothelial growth factor (VEGF) in ECs of HA/PLA microfibers surface were up-regulated. Immunostaining analysis revealed that the surface of HA/PLA nanofibers supported the expression of mature vascular EC phenotype CD31 protein. In vitro co-culture analysis showed that the luminal pre-endothelialization induced vascular smooth muscle cells (SMCs) to maintain their phenotypic shape and establish natural behavior patterns in the hierarchical tubular scaffold. These studies indicate that the biophysical cues of scaffolds are potent regulators of vascular EC endothelialization.


Subject(s)
Hyaluronic Acid , Tissue Scaffolds , Animals , Cell Proliferation , Endothelial Cells , Lactic Acid , Mice , Phenotype , Polyesters , Vascular Endothelial Growth Factor A
18.
Acta Pharmacol Sin ; 40(11): 1386-1393, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30918344

ABSTRACT

Myelin sheaths play important roles in neuronal functions. In the central nervous system (CNS), the myelin is formed by oligodendrocytes (OLs), which are differentiated from oligodendrocyte precursor cells (OPCs). In CNS demyelinating disorders such as multiple sclerosis (MS), the myelin sheaths are damaged and the remyelination process is hindered. Small molecule drugs that promote OPC to OL differentiation and remyelination may provide a new way to treat these demyelinating diseases. Here we report that donepezil, an acetylcholinesterase inhibitor (AChEI) developed for the treatment of Alzheimer's disease (AD), significantly promotes OPC to OL differentiation. Interestingly, other AChEIs, including huperzine A, rivastigmine, and tacrine, have no such effect, indicating that donepezil's effect in promoting OPC differentiation is not dependent on the inhibition of AChE. Donepezil also facilitates the formation of myelin sheaths in OPC-DRG neuron co-culture. More interestingly, donepezil also promotes the repair of the myelin sheaths in vivo and provides significant therapeutic effect in a cuprizone-mediated demyelination animal model. Donepezil is a drug that has been used to treat AD safely for many years; our findings suggest that it might be repurposed to treat CNS demyelinating diseases such as MS by promoting OPC to OL differentiation and remyelination.


Subject(s)
Cell Differentiation/drug effects , Demyelinating Diseases/drug therapy , Donepezil/therapeutic use , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Remyelination/drug effects , Animals , Corpus Callosum/metabolism , Cuprizone , Demyelinating Diseases/chemically induced , Donepezil/pharmacology , Drug Repositioning , Female , Ganglia, Spinal/metabolism , Mice, Inbred C57BL
19.
Sci Rep ; 7: 44476, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28300205

ABSTRACT

G protein-coupled receptors (GPCRs) are important modulators of many physiological functions and excellent drug targets for many diseases. However, to study the functions of endogenous GPCRs is still a challenging task, partially due to the low expression level of GPCRs and the lack of highly potent and selective GPCR antibodies. Overexpression or knock-in of tagged GPCRs, or knockout of specific GPCRs in mice, are common strategies used to study the in vivo functions of these receptors. However, generating separate mice carrying tagged GPCRs or conditional alleles for GPCRs is labor intensive, and requires additional breeding costs. Here we report the generation of mice carrying an HA-tagged DOR (delta opioid receptor) flanked by LoxP sequences at the endogenous DOR locus using a single recombination step, aided by the TALEN system. These animals can be used directly to study the expression, localization, protein-protein interaction and signal transduction of endogenous DOR using anti-HA antibodies. By crossing with mice expressing tissue-specific Cre, these mice can also generate offspring with DOR knockout within specific tissues. These mice are powerful tools to study the in vivo functions of DOR. Furthermore, the gene modification strategy could also be used to study the functions of many other GPCRs.


Subject(s)
Founder Effect , Gene Editing/methods , Hemagglutinins/genetics , Receptors, Opioid, delta/genetics , Recombinant Fusion Proteins/genetics , Transcription Activator-Like Effector Nucleases/genetics , Alleles , Animals , Antibodies, Monoclonal/chemistry , Base Sequence , Crosses, Genetic , Exons , Gene Expression , Genetic Loci , Hemagglutinins/metabolism , Integrases/genetics , Integrases/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Opioid, delta/metabolism , Recombinant Fusion Proteins/metabolism , Recombination, Genetic , Transcription Activator-Like Effector Nucleases/metabolism
20.
SELECTION OF CITATIONS
SEARCH DETAIL
...