Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 10: 861079, 2022.
Article in English | MEDLINE | ID: mdl-36118567

ABSTRACT

To address the issues of low detection accuracy and poor effect caused by small Oncomelania hupensis data samples and small target sizes. This article proposes the O. hupensis snails detection algorithm, the YOLOv5s-ECA-vfnet based on improved YOLOv5s, by using YOLOv5s as the basic target detection model and optimizing the loss function to improve target learning ability for specific regions. The experimental findings show that the snail detection method of the YOLOv5s-ECA-vfnet, the precision (P), the recall (R) and the mean Average Precision (mAP) of the algorithm are improved by 1.3%, 1.26%, and 0.87%, respectively. It shows that this algorithm has a good effect on snail detection. The algorithm is capable of accurately and rapidly identifying O. hupensis snails on different conditions of lighting, sizes, and densities, and further providing a new technology for precise and intelligent investigation of O. hupensiss snails for schistosomiasis prevention institutions.

2.
Comb Chem High Throughput Screen ; 25(3): 568-578, 2022.
Article in English | MEDLINE | ID: mdl-34259141

ABSTRACT

BACKGROUND: Sierpinski graphs S(n, k) are largely studied because of their fractal nature with applications in topology, chemistry, mathematics of Tower of Hanoi and computer sciences. Applications of molecular structure descriptors are a standard procedure which are used to correlate the biological activity of molecules with their chemical structures, and thus can be helpful in the field of pharmacology. OBJECTIVE: The aim of this article is to establish analytically closed computing formulae for eccentricity-based descriptors of Sierpinski networks and their regularizations. These computing formulae are useful to determine a large number of properties like thermodynamic properties, physicochemical properties, chemical and biological activity of chemical graphs Methods: At first, vertex sets have been partitioned on the basis of their degrees, eccentricities and frequencies of occurrence. Then these partitions are used to compute the eccentricity-based indices with the aid of some combinatorics. RESULTS: The total eccentric index and eccentric-connectivity index have been computed. We also compute some eccentricity-based Zagreb indices of the Sierpinski networks. Moreover, a comparison has also been presented in the form of graphs. CONCLUSION: These computations will help the readers to estimate the thermodynamic properties and physicochemical properties of chemical structure which are of fractal nature and can not be dealt with easily. A 3D graphical representation is also presented to understand the dynamics of the aforementioned topological descriptors.


Subject(s)
Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...